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Loss of estrogens or androgens increases the rate of bone
remodeling by removing restraining effects on osteoblasto-
genesis and osteoclastogenesis, and also causes a focal imbal-
ance between resorption and formation by prolonging the
lifespan of osteoclasts and shortening the lifespan of osteo-
blasts. Conversely, androgens, as well as estrogens, maintain
cancellous bone mass and integrity, regardless of age or sex.
Although androgens, via the androgen receptor (AR), and es-
trogens, via the estrogen receptors (ERs), can exert these ef-
fects, their relative contribution remains uncertain. Recent
studies suggest that androgen action on cancellous bone de-
pends on (local) aromatization of androgens into estrogens.
However, at least in rodents, androgen action on cancellous
bone can be directly mediated via AR activation, even in the
absence of ERs.

Androgens also increase cortical bone size via stimulation
of both longitudinal and radial growth. First, androgens, like
estrogens, have a biphasic effect on endochondral bone for-
mation: at the start of puberty, sex steroids stimulate endo-

chondral bone formation, whereas they induce epiphyseal clo-
sure at the end of puberty. Androgen action on the growth
plate is, however, clearly mediated via aromatization in es-
trogens and interaction with ER�. Androgens increase radial
growth, whereas estrogens decrease periosteal bone forma-
tion. This effect of androgens may be important because bone
strength in males seems to be determined by relatively higher
periosteal bone formation and, therefore, greater bone dimen-
sions, relative to muscle mass at older age. Experiments in
mice again suggest that both the AR and ER� pathways are
involved in androgen action on radial bone growth. ER� may
mediate growth-limiting effects of estrogens in the female but
does not seem to be involved in the regulation of bone size in
males.

In conclusion, androgens may protect men against osteo-
porosis via maintenance of cancellous bone mass and expan-
sion of cortical bone. Such androgen action on bone is medi-
ated by the AR and ER�. (Endocrine Reviews 25: 389–425, 2004)

I. Introduction
II. General Aspects of Androgen Action

A. Androgen metabolism
B. Mechanism of action of androgens
C. Nongenomic effects of sex steroids
D. Expression of androgen and estrogen receptors in the

skeleton
III. Effects of Androgens in Vitro on Skeletal Cells

A. Growth plate chondrocytes
B. Osteoblasts/osteocytes
C. Osteoclasts

IV. Effects of Androgens on the Rodent Skeleton

A. The rodent as a model for the study of skeletal andro-
gen action

B. Skeletal consequences of gonadectomy in rodents
C. Skeletal effects of androgen replacement in rodents
D. Skeletal effects of selective modulation of estrogen and

androgen action in rodents
E. Skeletal effects of selective manipulation of androgen

and estrogen action in transgenic mice
F. Skeletal effects of androgen resistance in rodents
G. Animal data in support of a dual mode of androgen

action on the skeleton
V. Indirect Mechanisms of Action of Androgens with Skeletal

Implications
A. Androgens, body growth, and body composition
B. Androgens and the GH-IGF-I axis

VI. Effects of Androgens on the Human Skeleton
A. Skeletal consequences of castration, male hypogonad-

ism, and androgen resistance in men
B. Skeletal effects of androgens in women
C. Skeletal effects of androgen replacement
D. Skeletal effects of selective modulation of androgen and

estrogen action in men
VII. General Conclusions

I. Introduction

ANDROGENS INDUCE MALE sexual differentiation
before birth and sexual maturation during puberty; in

adult men, they maintain the function of the male genital

Abbreviations: AF, Activation function; ANDRKO, AR knockout; AR,
androgen receptor; ArKO, aromatase knockout; BERKO, ER� knockout;
BMD, bone mineral density; cAIS, complete androgen insensitivity syn-
drome; DERKO, double ER knockout; DHEA, dehydroepiandrosterone;
DHEA-S, DHEA sulfate; DHT, 5�-dihydrotestosterone; DPA, dual pho-
ton absorptiometry; DXA, dual energy x-ray absorptiometry; E2, estra-
diol; ER, estrogen receptor; ERKO, ER� knockout; 17�-HSD, 17�-hy-
droxysteroid dehydrogenase; IGFBP, IGF binding protein; IHH, isolated
hypogonadotropic hypogonadism; KS, Klinefelter’s syndrome; LBD,
ligand-binding domain; OPG, osteoprotegerin; orch, orchidectomized or
orchidectomy; ovx, ovariectomized or ovariectomy; PCOS, polycystic
ovary syndrome; pQCT, peripheral QCT; QCT, quantitative computed
tomography; RANK, receptor activator of nuclear factor �B; RANKL,
RANK ligand; SERM, selective ER modulator; SPA, single photon absorp-
tiometry; T, testosterone; Tfm, testicular feminized male.
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system, including spermatogenesis. However, the role of
androgens in other target organs—including muscle tissue;
the cardiovascular, central nervous, and immune systems;
and bone—is less well-established (1).

In the early 1940s, Albright and Reifenstein were among
the first to refer to the antiosteoporotic and anabolic prop-
erties of androgens (2). From a public health perspective,
osteoporosis is a greater problem in women than in men (3).
This explains why most research efforts to explore skeletal
effects of sex steroids have been devoted to estrogens. More-
over, androgens may be converted into estrogens via the
P450 aromatase enzyme complex and may therefore act as
prohormones for estrogens. In this respect, there is increasing
evidence that at least part of the effects of androgens in men
can be explained by their aromatization into estrogens (4, 5).
Epiphyseal closure at the end of puberty, for example, is now
generally accepted to be estrogen-dependent in both genders
(6). In recent years, a specific role of androgens in skeletal
homeostasis has even been questioned, although androgen
receptors (ARs) in bone cells and AR-mediated actions on
bone have been documented for more than a decade (7, 8).

The aim of this review is to address the question whether
and how (through which receptors and/or pathways) an-
drogens may affect bone strength and provide protection
against osteoporosis. The clinical relevance of this question
results from the recognition that, even in men, fractures due
to skeletal fragility represent a huge public health problem.

Elderly men maintain cancellous bone integrity in com-
parison with postmenopausal women, although their bone
trabeculae become thinner. From a biomechanical perspec-
tive, compromised bone strength in men is the result of
gender-related differences in the loss of bone mass during
aging and, even more importantly, in the accumulation of
bone mass during childhood and adolescence (9) (Table 1).
During puberty, men develop a bigger bone size than
women, due to increased periosteal apposition. In females,
on the other hand, estrogens have an inhibitory effect on
periosteal bone formation, whereas endocortical apposition
is stimulated, narrowing the medullary cavity. Estrogens
also stimulate epiphyseal closure earlier in women, resulting
in longer bones in men. After puberty, the amount of bone
formed on the periosteal surface is still greater in men (10,
11), whereas endocortical bone resorption is similar in both
sexes, so that net bone loss is less in men (Table 1). The end
result is a skeletal sexual dimorphism, characterized by a
greater bone length, larger outer and inner bone perimeters,
and a larger cortical volume in men compared with women.
Therefore, adult men have greater bone mass than women,

but this is due to a greater bone volume and not to a greater
volumetric density. The greater areal bone mineral density
(BMD) in males is thus only an artifact of the dual energy
x-ray absorptiometry (DXA) software by expression of bone
mass as projected areal (grams per square centimeter) instead
of true or volumetric density (grams per cubic centimeter).
In the current review, we will focus on the potential mech-
anisms through which androgens may prevent bone loss,
increase bone mass (size), and improve bone strength.

In this manuscript, in vitro, experimental animal data and
clinical human data with respect to skeletal androgen action
will be reviewed in an attempt to define the possible impact
of androgen action [through the estrogen receptor (ER) and
AR pathways] on different aspects of skeletal homeostasis
during growth and aging. Recent clinical and experimental
data have indeed provided evidence that at least some of the
skeletal androgen actions are not solely ER-dependent. Fur-
thermore, we will discuss potential indirect nonbone cell-
mediated effects of androgens on the skeleton.

Finally, the potential clinical benefits of androgen replace-
ment in the context of male hypogonadism as well as in
different patient groups will be discussed. Recent studies
have explored different modes of action of androgens via the
AR and ER pathways and may ultimately contribute to the
potential use of selective AR or ER modulators in selected
male target populations.

II. General Aspects of Androgen Action

A. Androgen metabolism

Androgens are C-19 steroids secreted primarily from the
testes and the adrenals. The synthesis and metabolism of sex
steroids have been extensively reviewed in several recent
publications (4, 12). Therefore, we will just briefly mention
the major pathways to facilitate the interpretation of exper-
imental animal and clinical studies described in this review.
The major gonadal androgen in males is testosterone (T),
which is bound in the circulation to albumin and SHBG. It
can be irreversibly converted in peripheral tissues by the
enzyme 5�-reductase to the more potent 5�-dihydrotestos-
terone (DHT). Both DHT and T can activate the AR (Fig. 1).
T can also be converted to estradiol (E2) by an enzyme com-
plex known as estrogen synthetase or aromatase followed by
activation of the ERs. The adrenal cortex secretes large
amounts of C-19 androgens including dehydroepiandros-
terone (DHEA), DHEA-sulfate (DHEA-S), and androstenedi-
one. These C-19 androgens can be metabolized either directly
or indirectly in a rather complex pathway to estrone by the
aromatase enzyme or to T by steroid sulfatase, 17�-hydroxy-
steroid dehydrogenase (17�-HSD) and/or 3�-HSD (Fig. 1).
Thus, depending on the relative activity of aromatase, 5�-
reductase, 17�-HSD, 3�-HSD, and steroid sulfatase (13), T
and C-19 androgens may predominantly activate either the
AR or the ERs (Fig. 1). Several recent publications have
demonstrated that aromatase (14–25), 5�-reductase (14, 17,
18, 22, 26–30), 17�-HSD (14–17, 19, 23, 27, 31), 3�-HSD (14,
32), and steroid sulfatase (13–15, 17, 19) are expressed in bone
tissue, supporting the notion that local metabolism of an-
drogens in bone tissue might be of physiological importance.

TABLE 1. Sexually dimorphic age-related changes in humans

Men Women

Puberty
Epiphyseal closure Earlier
Endocortical bone apposition 1
Periosteal bone formation 1

After puberty
Trabecular perforation 1
Trabecular thinning 1
Periosteal bone formation 1

1, Increased vs. the opposite sex.
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Thus, sex steroids are partly synthesized locally in peripheral
tissues, providing individual target tissues with the means to
adjust formation and metabolism of sex steroids to their local
requirements (Fig. 1). To elucidate the relative importance of
androgen metabolism and action in bone, a variety of specific
inhibitors/antagonists have been extensively used, including
5�-reductase inhibition (33–35), AR antagonists (36–40), AR
inactivation in rats (41) and mice (42–46), aromatase inhibitors
(47–49), aromatase gene inactivation [in humans (50–53) and
mice (54–56)], ER antagonists (36, 40, 57–60), ER� gene inac-
tivation [in humans (61) and mice (46, 62–67, 69–74)], and ER�
inactivation in mice (64–67, 73, 75–81) (Fig. 1). A large part of
this review will describe and discuss the results of these dif-
ferent approaches to improving our understanding of the
mechanism of action of androgens in bone tissue.

B. Mechanism of action of androgens

In this section, we will discuss the relative importance of
the AR, ER�, and ER� in mediating the effect of androgens
on bone. The AR was cloned in 1988 (82, 83). ER� was cloned
in 1986 (84, 85) and a second ER, ER�, in 1995 (86). All of these
receptors belong to the nuclear receptor family. They are all
composed of three independent but interacting functional

domains; the NH2-terminal or A/B domain, the C or DNA-
binding domain, and the D/E/F or ligand-binding domain
(LBD) (87) (Fig. 2). The sex steroid receptors are DNA-bind-
ing proteins that have the capacity to interact with specific
DNA sequences, the androgen response element for the AR,
and the estrogen response element for the ERs. The sequence
homology in the DNA-binding domain is high among the sex
steroid receptors (87). The N-terminal domain of these re-
ceptors encodes a ligand-independent activation function
(AF-1), a region of the receptor involved in protein-protein
interactions, and transcriptional activation of target gene
expression (87) (Fig. 2). The COOH-terminal region, or LBD,
mediates ligand binding, receptor dimerization, nuclear
translocation, and transcription of target gene expression (87)
(Fig. 2). The classical mechanism of sex steroid action in-
volves interaction with intracellular receptors, which are ei-
ther cytoplasmic or nuclear. Binding of the sex steroids to
their respective receptors leads to conformational changes of
the protein that allow it to interact with the transcriptional
machinery: directly or indirectly via protein-protein inter-
actions with different transcription factors (88). The tran-
scriptional activity of androgen-bound AR and estrogen-
bound ERs is affected by tissue-specific coregulators,

FIG. 1. Simplified overview of the metabolism and action of sex steroids in men. 3�-HSD, 3�-Hydroxysteroid dehydrogenase. The sites of action
of the different specific inhibitors of androgen and estrogen action, which are discussed in the present review, are indicated as follows: 1)
aromatase inhibitor or aromatase-inactivated mice; 2) 5�-reductase inhibitor; 3) AR antagonist or AR-inactivated rodents; 4) ER antagonist;
5) ER �-inactivated mice; and 6) ER�-inactivated mice.
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including factors enhancing transactivation (coactivators)
and factors reducing transactivation (corepressors) (87, 89).

C. Nongenomic effects of sex steroids

It was initially thought that the only mechanism for
androgens/estrogens to affect transcription was by direct
binding of activated AR to androgen response element or
ERs to estrogen response element. But transcription can also
be affected by protein-protein interactions with, for instance,
the specificity protein-1, activation protein-1, and nuclear
factor �B proteins (87). Furthermore, a variety of cell types
respond to estrogens rapidly (within seconds/minutes),
making a classical genomic mechanism of action unlikely
(90). The importance of nongenomic mechanisms, in which
the ligand interacts with plasma membrane/cytosolic recep-
tors, is increasingly recognized to mediate the rapid re-
sponses to sex steroids (8, 91, 92). Nongenomic rapid effects
of estrogens in vitro have been described for both osteoblasts
and osteoclasts (8, 88, 91, 93). Furthermore, a plasma mem-
brane ER is reported to partly mediate a nongenomic apo-
ptotic effect of estrogens on osteoclasts (94).

The group of Manolagas (88) has demonstrated that the
antiapoptotic effect of estrogens and androgens on osteo-
blasts in vitro is mediated by Src/Shc/ERK signaling via a
nongenomic action of the classical receptors and is sex non-
specific. This action is mediated by the LBD and is eliminated
by nuclear targeting of the receptor protein (Fig. 3A). More
recently, the same research group presented in vitro as well
as in vivo data suggesting that the nongenomic effect of sex
steroids involves kinase-mediated regulation of common
transcription factors (95). Thus, nongenomic effects of sex
steroids alter the activity of Elk-1, CCAAT enhancer binding
protein-� (C/EBP�), and cAMP-response element binding
protein, or c-Jun/c-Fos by an extranuclear action of the ER
or AR, resulting in activation of the Src/Shc/ERK pathway
or down-regulation of c-Jun N-terminal kinase, respectively
(95). Interestingly, a synthetic ligand, estren, which repro-
duces the nongenomic effects of sex steroids without affect-
ing classical transcription, increases BMD in both ovariec-
tomized (ovx) females and orchidectomized (orch) male
mice, without affecting reproductive organs (uterus and
seminal vesicles) (Fig. 3B). Such ligands merit investigation
as potential therapeutic alternatives to hormone replacement
for osteoporosis, in both women and men (88, 95, 96).

Based on in vitro studies, Manolagas and co-workers (88,
97) have proposed that ER�, ER�, and the AR can transmit
the antiapoptotic effect of sex steroids with similar efficiency,

irrespective of whether the ligand is an estrogen or an an-
drogen. In contrast, however, several in vivo studies of trans-
genic mouse models do not support the notion that estrogens
have important AR-mediated physiological effects on can-
cellous BMD or the concept that nonaromatizable androgens
exert bone-sparing effects on cancellous BMD through direct
activation of the ERs (42, 45, 66, 67, 70, 98) (see also Sections
IV.E and IV.F). Although the hypothesis by Manolagas et al.
that the bone-sparing effect of sex steroids is mediated via
nongenomic mechanisms is extremely interesting and pro-
vocative, additional investigation and confirmation by oth-
ers are required before it can be fully accepted (99).

D. Expression of androgen and estrogen receptors in
the skeleton

It is generally believed that an important part of the effect
of androgens or their metabolites on the skeleton is exerted
via a direct stimulation of the AR, ER�, and/or ER� ex-
pressed locally in the skeleton. In this section, we will sum-
marize in vitro and in vivo studies investigating the expres-
sion of these three receptors by growth plate chondrocytes,
osteoblasts, osteocytes, osteoclasts, and/or by other bone-
related cells.

1. Growth plate cartilage. Androgens exert important effects on
pubertal growth, and a local effect on the growth plate is sup-
ported by the fact that both cultured epiphyseal chondrocytes
(100) and growth plate cartilage cells in vivo express AR (101–
105) as detected by immunohistochemistry (101–105), binding
studies (100), and in situ hybridization (105) (Table 2). The AR
has been detected in all layers of the human growth plate at
different ages (101–104), whereas in the rat it was expressed in
proliferative and early hypertrophic chondrocytes at sexual
maturation and only in prehypertrophic chondrocytes in older
rats (105). Male rats displayed a higher AR expression in the
growth plate and metaphyseal bone than female rats during
sexual maturation (105). In contrast, no major sex difference
regarding AR expression has been observed in human growth
plate chondrocytes (100–102).

Several studies have detected ER� (102, 104, 106–112) and
ER� (104, 106, 110, 113) protein in the human, rabbit, and rat
growth plate by using immunohistochemistry (Table 2), and
the results regarding ER� have been confirmed by in situ
hybridization (107). Most studies have detected ER� expres-
sion in all layers of the human and rabbit growth plate during
both fetal stage and puberty (102, 104, 108, 110). In contrast,
Kennedy et al. (111) detected ER� expression in the growth
plate of immature but not mature rats. In addition, it is clear
that the ER� protein is expressed in the growth plate, but the
expression pattern varies between studies. The first study by
Nilsson et al. (113) localized ER� mainly to the hypertrophic
chondrocytes, whereas later studies have detected it in all
layers of the growth plate (104, 106, 110) (Table 2). In con-
clusion, AR, ER�, and ER� are all expressed in the growth
plate, indicating that androgens, either directly or after aro-
matization, might influence the pubertal growth spurt and
growth plate closure via a direct interaction with local sex
steroid receptors. Future experiments, using growth plate-
specific inactivation of the different sex steroid receptors, are

FIG. 2. Diagramatic representation of the domain structure of nu-
clear receptors. The A/B domain at the NH2 terminus contains the
AF-1 site where other transcription factors interact. The C/D domain
contains the two-zinc finger structure that binds to DNA, and the E/F
domain contains the ligand binding pocket as well as the AF-2 domain
that directly contacts coactivator peptides. [Reproduced with permis-
sion from S. Nilsson et al.: Physiol Rev 81:1535–1565, 2001 (87).]
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needed to investigate whether these locally expressed recep-
tors are of functional importance for the regulation of longi-
tudinal bone growth.
2. Osteoblasts/osteocytes. Despite the obvious importance of
androgens and estrogens in the regulation of adult bone
metabolism, it has been difficult to detect AR and ERs in
osteoblasts. Therefore, osteoblasts were for a long time not
generally considered as primary target cells for sex ste-
roids. The development of new and more sensitive tech-
niques has resulted in the detection of the AR as well as

ER� and ER� expression by osteoblasts and osteocytes.
The expression of the AR in cultured osteoblasts was first
described in 1989 by Colvard et al. (114) using a nuclear
binding assay. Several in vivo and in vitro studies have
confirmed that the AR mRNA and protein are expressed
by osteoblasts and osteocytes (14, 18, 101, 103, 105, 114 –
122) (Table 3). AR binding has been demonstrated in vitro
in osteosarcoma cell lines, osteoblast-like cell lines, and
primary osteoblasts from several different species includ-
ing human, rat, and mouse (18, 115, 118 –120, 123–126)

FIG. 3. Nongenomic effects on BMD of the synthetic ligand estren. A, Model for ligand-induced dissociation of antiapoptotic from classical
genomic activity of sex steroid receptors. The three diagrams depict conformational states of the receptor protein before and after interaction
with the ligands, which are required to effect either the genomic (genotropic) or the antiapoptotic responses. The inactive unliganded receptor
is depicted in the middle in gray. The change in conformation induced by interaction with a ligand that preferentially triggers transcriptional
activity is depicted in the right in blue. The change in conformation induced by interaction with a ligand that preferentially triggers the
antiapoptotic activity of the receptor (e.g., the estren) is depicted in the left in magenta. The green circle and green diamond represent the two
ligands; please note the perfect and imperfect fit within the binding pocket, respectively. Ligands such as E2 will of course induce both
conformations. Although in the antiapoptotic model we show direct contact between the receptor and Src, it is possible that adaptor protein(s)
may bridge the interaction between the two molecules. Corresponding activation energy (Ea) of the receptor protein in the unliganded state
(broken line), progressing to either the genotropic conformation (blue line) or the antiapoptotic conformation (magenta line), is shown at the
bottom. B, Summary of the recent results presented by Kousteni et al. (96) and earlier studies (66, 70) regarding the effects of estrogens (E2),
androgens (DHT), and the nongenomic acting synthetic ligand estren in gonadectomized mice. Estren reproduces the nongenomic effects of sex
steroids without affecting classical transcription, and it increases BMD without affecting the reproductive organs. Thus, these results indicate
that its effects on BMD are exerted via nongenomic effects, whereas the reproductive effects require genomic effects. I, Increase; NC, no change.
[Panel A is reproduced with permission from S. Kousteni et al.: Cell 104:719–730, 2001 (88) with permission from Elsevier Science.]

Vanderschueren et al. • Androgens and Bone Endocrine Reviews, June 2004, 25(3):389–425 393



(Table 3). The number of binding sites per cell appears to
vary greatly from 70 to 14,000 binding sites per cell (127),
depending on the assay technique, but it is in a range seen
in other androgen target tissues. Human osteoblastic cells,
isolated from cortical bone, expressed higher AR mRNA
levels and AR binding than cells isolated from cancellous
bone, whereas no major differences in AR expression in
osteoblasts derived from males compared with osteoblasts
derived from females were found (118). Most studies
(116, 117, 119, 125), but not all (118, 128), indicate that
androgen up-regulates the expression of its own receptor
in osteoblasts.

ER expression in bone cells was first reported in 1988
when specific binding sites for estrogens were identified
in nuclear extracts from rat and human osteoblasts (129 –
131) (Table 3). The number of estrogen binding sites in
different studies varies between 60 and 4,500 binding sites
per osteoblast, which is lower than in estrogen-responsive
reproductive cells such as uterine and breast cells (132).
Estrogens regulate osteoblast proliferation and expression
of genes encoding enzymes, bone matrix proteins, hor-
mone receptors, transcription factors, as well as growth
factors and cytokines (133). However, conflicting results
have been presented regarding the in vitro effects of es-
trogens on proliferation and differentiation of osteoblasts,
which might be due to differences in the number of re-
ceptors per cell, animal species, skeletal localization of the
osteoblasts, the stage of osteoblast differentiation, and the
relative concentration of ER� vs. ER� in the osteoblasts
(132, 133). It is now well-established that both ER� and

ER� are expressed by osteoblasts and osteocytes, as stud-
ied both in vivo and in vitro; in several different species
including human, rat, mouse, pig, and guinea pig; and
using several different techniques including Western blot,
Northern blot, RNase protection assay, PCR, in situ hy-
bridization, and immunohistochemistry (Table 3). Some
studies indicate that ER� expression increases with the
increasing stage of differentiation of cultured osteoblasts
(132, 134 –136). ER� mRNA levels have been shown to
either increase (135) or remain constant (134) with ad-
vancing cellular development. Thus, the ratio of ER� to
ER� and the estrogenic response may vary as the cells
progress from preosteoblasts to mature osteoblasts (132).
In a recent paper, the relative expression of ER�, ER�, and
the AR was followed simultaneously during differentia-
tion of cultured osteoblasts (121), demonstrating that ER�
levels were elevated during matrix maturation and then
declined during mineralization. ER� expression was rel-
atively constant throughout differentiation, whereas AR
levels were lowest during proliferation and then increased
throughout differentiation, with highest levels in the most
mature mineralizing cultures (121). One study in human
developing bone demonstrated that ER� immunoreactiv-
ity is strong in osteoblasts adjacent to the periosteal surface
of the cortical bone, whereas ER� immunoreactivity is
dominant in osteoblasts in cancellous bone (106). Taken
together, the AR and both ER� and ER� are expressed by
osteoblasts, but there is no consensus about their relative
expression during differentiation and their localization
within the skeleton.

TABLE 2. Expression of ARs and ERs in growth plate cartilage

Receptor Species In vivo/in vitro Protein/mRNA Technique Characteristics Refs.

AR Human In vivo Protein IH Pubertal, predominantly hypertr. 101
Human In vivo Protein IH Fetal, all layers 102
Human In vivo Protein IH Pubertal, all layers 104
Human In vivo Protein IH Infant, rim between prolif. and hypertr. 103
Human In vitro Protein Binding Fetal, cultured chondrocytes 100
Rat In vivo Protein/mRNA IH/ISH Sexual maturation, prolif. and early hypert.

Older, prehypertr.
105

ER Rabbit In vitro Protein Binding Articular chondrocytes 399
Rat In vivo Protein Binding Growth plate cartilage 112

ER� Human In vivo Protein IH Neonatal, prolif. and prehypertr. 106
Human In vivo Protein IH Fetal, all layers 102
Human In vivo Protein IH Pubertal, all layers 104
Human In vivo Protein IH Fetal, all layers 108
Human In vivo Protein/mRNA IH/ISH Pubertal children 107
Pig In vivo Protein IH Cartilage above the growth plate 109
Rabbit In vivo Protein IH Several ages, all layers 110
Rabbit In vivo mRNA ISH Growing rabbits 107
Rabbit In vivo Protein IH Sexual maturation, prolif. and early

hypertr.
111

Rat In vivo Protein IH Growth plate cartilage 112
Rat In vivo Protein IH All layers 110
Rat In vivo Protein IH In immature but not mature rats, prolif.

and hypertr.
111

ER� Human In vivo Protein IH Pubertal, hypertr. 113
Human In vivo Protein IH Neonatal, prolif. and prehypertr. 106
Human In vivo Protein IH Pubertal, all layers 104
Rabbit In vivo Protein IH Several ages, all layers 110
Rat In vivo Protein IH Several ages, all layers 110

ER, estrogen receptor binding and not possible to distinguish between ER� and ER�; IH, immunohistochemistry; Binding, binding studies;
ISH, in situ hybridization; prolif., proliferative layer of growth plate; hypertr., hypertrophic layer of growth plate.
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3. Osteoclasts. AR expression has been detected in avian (137)
and mouse (138) osteoclasts in vitro and in rat osteoclasts
in vivo (17), whereas no expression has been detected in
human osteoclasts in vivo (101, 103) (Table 4). Thus, the
available data are contradictory regarding AR expression in
osteoclasts, and it is generally believed that the major part of
the effect of androgens on osteoclastogenesis and bone re-
sorption is mediated by cells of the osteoblast lineage (139).
However, some recent in vitro studies demonstrate that
androgens can act directly on osteoclasts to promote their
apoptosis (88, 96, 140). Furthermore, in bone marrow cell
preparations, sex steroids have identical effects on osteoclas-
togenesis in the presence or absence of cells of the osteo-
blastic lineage (140). An effect of estrogens, produced by
aromatization of androgens, via ERs localized in osteoclasts

is possible because most (106, 141–151), but not all (107, 152,
153), studies have identified ER� and ER� in osteoclasts
(Table 4). In two separate studies, preosteoclasts, but not
mature osteoclasts, were found to express ER� (154, 155).
Taken together, the conflicting results regarding ER expres-
sion in osteoclasts suggest that osteoclasts express a low
number of ERs, which may be close to the detection limit of
the different assays used. This would be consistent with the
fact that most but not all studies have detected ERs on os-
teoclasts. Although the expression and the physiological role
of sex steroid receptors in osteoclasts remain controversial,
the available evidence suggests that the inhibitory effect of
estrogens on osteoclastogenesis is largely mediated indi-
rectly by cells of the osteoblast lineage, and not via a direct
interaction with ERs on osteoclasts.

TABLE 3. Expression of ARs and ERs in osteoblasts

Receptor Species In vivo/in vitro Protein/mRNA Technique Characteristics Refs.

AR Human In vivo Protein IH Osteoblasts/osteocytes 101, 103
Human In vitro Protein/mRNA Binding/Northern/PCR Osteoblast-like cells 14, 114, 118, 124, 125
Human In vitro Protein/mRNA Binding/Western/RPA Osteoblastic cell line 117, 119, 123
Human In vitro Protein/mRNA Binding/Northern/IH/

RPA
OS 115, 116, 120, 125

Rat In vivo Protein/mRNA Western/IH/ISH/PCR Osteoblasts/osteocytes 105, 121
Rat In vitro Protein Binding Osteoblastic cell line 123
Mouse In vitro Protein/mRNA Western/IH/Binding/

Northern/PCR
Osteoblastic cell line 18, 122, 126

ER Human In vivo Protein Binding Osteoblasts, osteoblast-
like cells, OS

114, 124, 129–131,
400–402

Rat In vitro Protein Binding Osteoblast-like cells,
OS

130, 403

Mouse In vitro Protein Binding Osteoblastic cell line,
OS

126, 159, 404

ER� Human In vivo Protein/mRNA IH, RT-PCR, in situ
PCR

Osteoblasts/osteocytes 106, 109, 131, 144,
405

Human In vivo Protein/mRNA IH/ISH Osteoblasts, not
osteocytes

107

Human In vitro Protein/mRNA Enzyme immunoassay/
Northern/PCR

Osteoblast-like cells 14, 114, 129, 406

Human In vitro mRNA PCR Osteoblastic cell line 135
Human In vitro Protein/mRNA Western/IH/Northern OS 130, 407–409
Pig In vivo Protein IH Mainly in osteocytes 109
Guinea pig In vivo Protein IH Mainly in osteocytes 109
Rabbit In vivo mRNA ISH Osteoblasts, not

osteocytes
107

Rat In vivo Protein/mRNA IH/PCR/RT-PCR Osteoblasts/osteocytes 134, 157, 158
Rat In vitro Protein/mRNA Western/Northern/PCR Osteoblast-like cells 121, 136, 158, 403
Rat In vitro Protein IH Osteoblastic cell line 122
Rat In vitro mRNA Northern/PCR OS 130, 134, 410
Mouse In vitro Protein/mRNA IH/PCR Osteoblastic cell line 122
Mouse In vitro mRNA Northern OS 404

ER� Human In vivo Protein/mRNA IH/Western/RPA Osteoblasts/osteocytes 106, 150, 151
Human In vitro mRNA PCR Osteoblastic cell line 135
Human In vitro Protein/mRNA Western/RPA Osteoblast-like cells 150
Human In vitro Protein/mRNA Western/RPA OS 150
Rat In vivo mRNA PCR/RT-PCR Bone tissue 134, 157
Rat In vivo Protein/mRNA IH/PCR/ISH Osteoblasts 153, 158
Rat In vitro Protein/mRNA Western/PCR Osteoblast-like cells 121, 134, 158
Rat In vitro Protein IH Osteoblastic cell line 122
Rat In vitro Protein/mRNA Western/PCR OS 134, 150
Mouse In vivo Protein/mRNA IH Osteoblasts/osteocytes 150
Mouse In vitro Protein/mRNA IH/PCR Osteoblastic cell line 122

ER, Estrogen receptor binding and not possible to distinguish between ER� and ER�; IH, immunohistochemistry; Binding, binding studies;
ISH, in situ hybridization; RT-PCR, quantitative PCR; Western, Western blot; Northern, Northern blot; RPA, RNase protection assay; OS,
osteosarcoma cell line.
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4. Other bone-related cells. It is generally believed that os-
teoblasts originate from pluripotent mesenchymal stem
cells in the bone marrow. Several studies have demon-
strated that bone marrow stromal cells express the AR
(122, 156) as well as both ER� (122, 154, 157–160) and ER�

(122, 157, 158) (Table 5). Furthermore, both AR and ERs
have been detected on megakaryocytes (151, 156) and en-
dothelial cells (101, 151, 156) within the bone compart-
ment. Thus, besides growth plate chondrocytes and os-
teoblasts, it is clear that several other types of cells within

the skeleton express sex steroid receptors, which may
be involved in mediating the effect of androgens on the
skeleton.

III. Effects of Androgens in Vitro on Skeletal Cells

The effect of androgens on skeletal growth and on adult
bone metabolism is exerted via direct effects on the different
types of cells located within the bone compartment. Indirect
effects via muscle or vascular cells may also be operative.

TABLE 4. Expression of ARs and ERs in osteoclasts

Receptor Species In vivo/in vitro Protein/mRNA Technique Characteristics Refs.

AR Human In vivo Protein IH No expression in osteoclasts 101, 103
Chicken In vitro Protein Binding Osteoclasts 137
Rat In vivo Protein/mRNA IH/ISH Osteoclasts 17
Mouse In vitro Protein IH Osteoclast-like cells 138

ER Human In vitro Protein Binding Preosteoclastic cell line 141
Avian In vitro Protein Binding Isolated osteoclasts 142, 143

ER� Human In vivo Protein/mRNA ISH Osteoclasts 106, 144, 146
Human In vivo Protein/mRNA IH/ISH No expression in osteoclasts 107
Human In vivo Protein IH Osteoclast-type giant cells in

granulomas in 10 of 26 patients
145

Human In vitro Protein/mRNA Western/Northern Osteoclasts from giant cell tumors 147
Human In vitro mRNA PCR Preosteoclastic cell line 141
Human In vitro mRNA PCR Primary purified osteoclasts 148
Human In vitro mRNA PCR/ISH No expression in cells from human

giant cell tumors
152

Human In vitro Protein/mRNA IH/ISH In preosteoclasts but not in mature
osteoclasts

154

Rabbit In vivo mRNA ISH No expression in osteoclasts 107
Rabbit In vitro mRNA Northern Osteoclasts 149
Avian In vitro Protein/mRNA Western/Binding/

Northern
Isolated osteoclasts 142, 143

Rat In vivo mRNA ISH In mononuclear precursors, not in
multinuclear mature osteoclasts

155

ER� Human In vivo Protein IH Osteoclasts 106, 150, 151
Rat In vivo mRNA ISH No expression in osteoclasts 153
Murine In vivo Protein IH Osteoclasts, cytoplasmatic 150

No expression, No expression was detected; ER, estrogen receptor binding and not possible to distinguish between ER� and ER�; IH,
immunohistochemistry; Binding, binding studies; ISH, in situ hybridization; Western, Western blot; Northern, Northern blot; RPA, RNase
protection assay.

TABLE 5. Expression of ARs and ERs in other bone-related cells

Receptor Species In vivo/in vitro Protein/mRNA Technique Characteristics Refs.

AR Human In vivo Protein IH Mononuclear and endothelial cells in BM 101
Human In vivo Protein IH BM stromal cells, macrophages,

endothelial cells, megakariocytes
156

Mouse In vitro Protein/mRNA IH/PCR BM cells 122

ER Mouse In vitro Protein Binding BM stromal cells 159

ER� Human In vitro Protein/mRNA ISH/Northern BM stromal cells 154
Rat In vivo mRNA PCR Calvarian periosteum 411
Rat In vitro mRNA RT-PCR BM stromal cells 157, 158
Mouse In vitro Protein/mRNA IH/PCR BM stromal cells 159, 160
Mouse In vitro Protein IH Cultured BM cell line 122

ER� Human In vivo Protein IH Megakariocytes, capillary blood vessel
cells

151

Rat In vitro mRNA RT-PCR BM stromal cells 157
Rat In vitro mRNA RT-PCR BM cells 158
Mouse In vitro Protein/mRNA IH/PCR BM cells 122

ER, Estrogen receptor binding and not possible to distinguish between ER� and ER�; IH, immunohistochemistry; Binding, binding studies;
RT-PCR, quantitative PCR; Northern, Northern blot; BM, bone marrow.
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A. Growth plate chondrocytes

Androgens probably have direct effects on growth plate
cartilage and thus on longitudinal bone growth. It has been
documented, at least when using very strict culture condi-
tions, that androgens regulate both proliferation and differ-
entiation of cultured epiphyseal chondrocytes (100, 161–164),
supporting a direct effect of androgens on growth plate car-
tilage. A direct effect of androgens on epiphyseal growth and
maturation is also supported by the fact that T, injected
directly into the growth plate of rats, increases the growth
plate width (165). Androgens, however, also have an impor-
tant effect on GH secretion and its pulsatility during puberty,
and this may indirectly mediate their effects on linear growth
(166).

B. Osteoblasts/osteocytes

Most in vitro studies (18, 126, 167–172), but not all (115, 173,
174), demonstrate that both DHT and T increase cell prolif-
eration of cultured osteoblast progenitors derived from dif-
ferent species. The effects on osteoblast differentiation are
rather controversial, including stimulatory, no effect, and
inhibitory effect on alkaline phosphatase, type I collagen,
osteocalcin, and mineralization of extracellular bone matrix
(18, 115, 125, 167, 169, 170, 173–177). These conflicting results
might be due to differences in receptor concentration, animal
species, skeletal localization of the osteoblasts, or the stage of
osteoblast differentiation. However, in our opinion, most
studies indicate that androgens induce a more differentiated
osteoblast phenotype. Recent studies demonstrate that an-
drogens decrease osteoblast and osteocyte apoptosis (88, 96).
Thus, most in vitro studies support the notion that androgens
stimulate proliferation of osteoblast progenitors and differ-
entiation of mature osteoblasts while inhibiting apoptosis of
osteoblasts.

Some of the local effects of androgens on bone might, as
previously described for estrogens (4), be mediated via a
regulation of cytokines and growth factors expressed locally
in bone. The three most discussed androgen-regulated lo-
cally expressed factors include TGF�, IGFs, and IL-6. TGF�
and the IGFs are involved in bone formation, whereas IL-6
increases osteoclastogenesis and androgens may therefore
theoretically preserve bone via either an induction of TGF�
and IGFs or an inhibition of IL-6. We will here discuss results
regarding androgen-induced regulation of these factors, but
it should be emphasized that the functional role of these
regulations is complex and full interpretation is not yet pos-
sible. TGF� is highly expressed in bone tissue (the largest
reservoir for TGF�), and it is a mitogen for osteoblasts (178,
179). Several studies, both in vivo and in vitro, indicate that
androgens increase TGF� expression and/or activity (115,
169, 180, 181). Furthermore, orch reduces bone content of
TGF�, whereas T treatment increases TGF� content (181). It
remains unclear to what extent this effect of T is mediated
through the AR or ERs. In contrast, Hofbauer et al. (173)
found that androgens decrease TGF� mRNA levels in a hu-
man osteoblastic cell line. IGFs and IGF-binding proteins
(IGFBPs) exert important effects on osteoblast proliferation
and differentiation (182, 183). Androgens have been shown

to regulate the expression and/or the activity of IGFs either
directly by regulating IGF expression or indirectly via a reg-
ulation of the expression of IGFBPs in several (168, 175, 184),
but not all, studies (18, 185). IL-6 is a cytokine believed to be
involved in the bone loss associated with sex steroid defi-
ciency. It increases osteoclastogenesis and bone resorption.
Orch increases IL-6 secretion by bone marrow cells (186).
DHT and T suppress the IL-6 production in both cultured
bone marrow stromal cells and osteoblasts (187–189). Fur-
thermore, androgens inhibit the expression of the gp80 and
the gp130 subunits of the IL-6 receptor (190). Orch increases
osteoclastogenesis, which is inhibited by androgens or IL-6
neutralizing antibody (188), and IL-6 knockout mice do not
lose bone after orch (188), supporting the notion that inhi-
bition of IL-6 production is at least partly involved in the
antiresorptive effect of androgens on bone. Thus, TGF�,
IGFs, and IL-6 are three major factors believed to be involved
in the bone-sparing effect of androgens. However, other pos-
sible pathways for androgen regulation of bone metabolism
have also been investigated. Androgens inhibit PTH- or IL-
1-induced prostaglandin E2 production (176) and PTH-in-
duced cAMP production (170, 191), whereas they increase
IL-1� production (192) and the mitogenic effect of fibroblast
growth factor (168) in cultured osteoblasts. A recently pub-
lished study demonstrates that DHT decreases osteoprote-
gerin (OPG) levels (193), whereas it has previously been
shown that estrogens increased OPG expression in cultured
osteoblasts (194, 195). It remains to be investigated in vivo
whether DHT and estrogens have opposite effects on OPG
expression and, if so, whether it is of any physiological im-
portance for the regulation of bone homeostasis.

C. Osteoclasts

Osteoclasts are derived from hematopoietic precursor cells
of the colony-forming unit granulocyte-macrophage lineage
within the bone marrow. The proliferation of these colony-
forming unit granulocyte macrophages is up-regulated after
orch. The terminal differentiation into mature osteoclasts
requires close interaction and also cell-to-cell contact with
stromal cells of the osteoblastic lineage in the bone marrow
under tight control of the receptor activator of nuclear factor
�B-ligand (RANKL)/OPG system (196). The osteoblastic
stromal cells also appear to be essential for the bone-sparing
action of androgens. This notion is supported by the fact that
in the SAMP6 mouse model, in which osteoblast function is
impaired due to an age-related decrease in osteoblast pro-
genitors (197), the rise in remodeling after orch is blunted.
Their failure to up-regulate osteoclastogenesis is secondary
to defective osteoblast formation. Thus, orch-induced in-
creased osteoclastogenesis is dependent on osteoblast/
preosteoblast-derived signals (139). Therefore, the removal
of testes-derived sex steroids by orch in mice primarily leads
to bone marrow changes. These changes, mediated by cells
of the osteoblast lineage, are characterized by an increase of
osteoblast precursors, which in turn indirectly stimulates
osteoclastogenesis (198). A direct effect of androgens on
preosteoclasts/osteoclasts is more controversial. However,
Pederson et al. (137) have demonstrated that osteoclasts ex-
press AR and that DHT inhibits the resorptive capacity of
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isolated human, murine, and avian osteoclasts in vitro. Fur-
thermore, recent in vitro data suggest that androgens may
also directly modulate RANKL-induced osteoclast forma-
tion, independently of the bone marrow cells (199). Addi-
tionally, androgens, like estrogens, may regulate osteoclast
survival, RANK expression in preosteoclasts, and activity of
mature osteoclast independently of their effects on bone mar-
row stromal cells, at least in vitro. However, the contribution
of these in vitro observations to in vivo activity of androgens
remains to be clarified. A direct effect of estrogens on oste-
oclasts in vivo is supported by the finding that E2 promotes
apoptosis of murine osteoclasts (200). These results indicate
that osteoclast precursors as well as osteoclasts are able to
respond directly to androgens in vitro and thus are potential
androgen target cells in vivo (137). In conclusion, it is appar-
ent that some of the effect of androgens on osteoclastogenesis
is indirectly mediated via cells of the osteoblasts lineage,
although further investigation is needed to characterize a
possible direct effect of androgens on osteoclasts in vivo.

IV. Effects of Androgens on the Rodent Skeleton

A. The rodent as a model for the study of skeletal
androgen action

The rat is the best-characterized animal model for the
study of skeletal androgen action. The skeleton of young and
mature rats is mainly dependent on modeling. This modeling
process involves both growing and shaping of the bones. It
is a highly synchronized process of bone formation at one site
and resorption at another, with the former exceeding the
latter. Longitudinal bone growth occurs through endochon-
dral bone formation, whereas radial bone growth is the result
of periosteal apposition. The expansion of the medullary
cavity is a combination of endocortical bone resorption and
formation.

Young rats have been widely used as a model for the
growing skeleton. The skeleton of rats, though, differs from
the human skeleton because the growth plates never fully
close (201). This should not be overinterpreted because by 12
months of age, the growth plate characteristics have stabi-
lized, with no further significant change up to 24 months
(202). This allows aged rats to be used as a model for human
skeletal remodeling. Bone remodeling maintains the me-
chanical and structural integrity of the skeleton after puberty.
Coupling of osteoblast and osteoclast actions ensures that the
processes of bone resorption and formation occur at the same
time and place, which allows old bone to be replaced by new
bone. It is also important to mention that rodents do not
experience spontaneous fractures. Rodent studies will there-
fore not answer the question whether androgens protect
against osteoporotic fractures, but they may still contribute
to our knowledge of how androgens influence skeletal struc-
ture and density.

Several experimental procedures have been used to eval-
uate skeletal androgen action and metabolism in male and
female rodents. These include (surgical and chemical)
castration and administration of AR antagonists, ER antag-
onists, aromatase inhibitors, selective ER modulators
(SERMs), and type II 5�-reductase inhibitors, either alone or

in combination with sex steroid replacement. Because the
skeletal effects of these experimental conditions often differ
between cortical and cancellous bone compartments, these
compartments will be considered separately. Some of these
interventions may also induce extraskeletal effects—includ-
ing changes in body composition, growth, and food intake—
that may indirectly interfere with skeletal homeostasis (see
Section V). Tables 6–8 summarize the most important find-
ings concerning androgen action in male and female rats,
respectively.

More recently, mice have been introduced as a model to
study skeletal androgen action. Mice with targeted disrup-
tion of the different receptors or enzymes involved in an-
drogen action have been described, and their skeletal phe-
notype will be reviewed. At the end of each section, we will
indicate to what extent these animal data may contribute to
our understanding of how androgens affect skeletal structure
and density.

B. Skeletal consequences of gonadectomy in rodents

1. Skeletal effects of gonadectomy in rats. Surgical castration, as
induced by ovx in the female rat and orch in the male rat,
represents the most frequently used procedure to study skel-
etal sex steroid action. Chemical castration, as induced by
GnRH agonists, has similar skeletal effects as surgical cas-
tration in female rats (37), but its impact on bone has not been
studied in male rats. Both orch and ovx dramatically reduce
serum levels of T and E2 in male and female rats. However,
these procedures do not totally eliminate E2 production, be-
cause adrenal androgens can be transformed into estrogens
after aromatization. In both genders, castration has consid-
erable impact on cancellous and cortical bone compartments.
However, whereas this response appears to be similar in
cancellous bone, it is different in cortical bone.

Skeletal cancellous changes are characterized by an in-
crease in cancellous bone turnover, resulting in bone loss in
gonadectomized rats, irrespective of gender, age, or strain
(203–211) (Table 6). Cancellous bone loss after gonadectomy
can be detected not only by histomorphometry but also by
peripheral quantitative computed tomography (pQCT) and
microcomputed tomography. Biochemical markers of bone
resorption (e.g., urinary deoxypyridinoline) and formation
(e.g., serum osteocalcin) reflect the early increase of cancel-
lous bone turnover after gonadectomy in both genders (40,
204, 209, 211–214). These changes in the cancellous bone
compartment are reminiscent of high-turnover osteoporosis

TABLE 6. Skeletal effects of orch and ovx in rats

Body weight
gain

Appendicular
skeletal growth

Cancellous
bone mass

Cortical
bone
area

Male rats
Growing 2, � 2, � 2 2, �
Aged � � 2 2

Female rats
Growing 1, � 1, � 2 1, �
Aged 1 NA 2 NA

The main effects of sex hormone deficiency on body weight and the
different bone compartments are summarized.2, Decreased;1, in-
creased; �, no change; NA, not available. For references, see text.
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after menopause (215) and explain why the ovx female and
the orch male rat model have gained wide acceptance as
animal models for osteoporosis (216). Also in line with ob-

servations in postmenopausal osteoporosis in humans, the
number of osteoclasts is increased after ovx (39, 203, 207, 212,
217, 218) or orch (208, 210, 211, 219). Osteoblast number,
surface, and mineral apposition rates are up-regulated in an
attempt to fill the increased number of resorption cavities
created by these osteoclasts (203, 208, 210, 211, 220). Al-
though relative changes in histomorphometric and biochem-
ical indices of bone resorption and formation indices cannot
predict final outcomes on cancellous bone mineral content,
orch-induced bone resorption tends to be increased more and
longer than formation, even at the level of the individual
remodeling unit (211, 220). Therefore, and despite increased
bone formation at the tissue level, net cancellous bone loss
occurs as a result of an imbalance with bone resorption
exceeding bone formation in each bone mineral unit. The
microanatomical mechanism responsible for this cancellous
bone loss after orch in rats is a reduction in trabecular num-
ber (33, 211, 220) and thickness (211).

In contrast to the human skeleton, the rodent cortical skel-
eton has no Haversian canals, which explains why intracor-
tical bone loss is not readily observed in ovx and orch ro-
dents. Some studies have reported increased cortical porosity
in older orch rats (205, 221), probably due to orch-induced
medullary expansion through increased resorption at the
endocortical site. In contrast to the changes in cancellous
bone, the responses to castration at the periosteal site and
growth plate are essentially sexually dimorphic, especially in
young growing rats (Table 6). Periosteal and longitudinal
bone formation appear to be increased in some (40, 57, 58,
222–224), but not all (203, 204, 207), studies on ovx and
decreased in the orch model (207, 210, 213, 219, 224) (Fig. 4).
The end result will be cortical bone expansion and increased
bone length in the ovx female but decreased cortical bone
volume and bone length in the orch male. This increase/
decrease in cortical bone volume after gonadectomy (in fe-
male and male rats, respectively) is primarily due to a relative
increase/decrease in periosteal bone formation and not (or to
a lesser extent) to significant changes of the inner endocor-
tical perimeter (225). The implication is that sex hormone
deficiency may have a more severe impact on the integrity
of the male skeleton compared with the female skeleton.

TABLE 7. Skeletal effects of sex steroids or sex steroid-related
agents in orch and ovx rats

Body
weight
gain

Appendicular
skeletal
growth

Cancellous
bone
mass

Cortical
bone
area

orch � T �, 1 �, 1 1 1
orch � DHT �, 2 �, 1 1 �, 1
orch � E2/phytoestrogens �, 2 � 1 �, 1
orch � SERM 2 NA 1 1
ovx � T � NA 1 �
ovx � ADIONE � 2 1 NA
ovx � DHEA � NA 1 �
ovx � DHT �, 1 �, 1 1 �
ovx � E2/phytoestrogens 2 2 1 NA
ovx � SERM 2 NA 1 NA
ovx � tibolone 2 2 1 �

The reported effects on body weight and the different bone com-
partments are summarized. 2, Decreased; 1, increased; �, no
change; NA, not available; ADIONE, androstenedione. For refer-
ences, see text.

TABLE 8. Skeletal effects of selective pharmacological modulation
of androgen and estrogen action in intact male and female rats

Body
weight

Appendicular
skeletal
growth

Cancellous
bone
mass

Cortical
bone area

Male rats
Aromatase inhibitor 2 �, 2 2 �, 2
ER antagonist � � � �
SERM 2 NA 1 �
AR antagonist 2 NA (2) �
5�-reductase inhibitor � � � �

Female rats
AR antagonist �, 1 � �, (2) �
ER antagonist � � 2 �

The effects of selective pharmacological modulation of androgen
and estrogen action on body weight and the different bone compart-
ments are summarized. 2, Decreased; 1, increased; �, no change;
NA, not available. Changes between parentheses indicate that bone
loss was only documented by changes in total calcium or ash content
and not by methods evaluating decreases of cancellous bone specif-
ically. For references, see text.

FIG. 4. A, The effect of ovx on periosteal
bone formation rate. The mean � SE (ver-
tical bar) and tetracycline labeling period
(horizontal line) for intact controls (E) and
ovx (F) rats are shown as a function of time
after ovx. P � 0.01 for all ovx time points
compared with intact controls. B, The effect
of orch on periosteal bone formation rate.
The mean � SE and tetracycline labeling
period for intact controls (Œ) and orch (�)
are shown as a function of time after orch.
P � 0.01 for all orch time points compared
with the same labeling period in intact con-
trols. [Reproduced from R. T. Turner et al.:
J Orthop Res 8:612–617, 1990 (234) with
permission from Orthopaedic Research
Society.]
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Gender-related differences in the response of periosteal bone
to gonadectomy also explain why methods that measure
areal rather than volumetric bone density, such as DXA, tend
to overestimate bone loss in the orch male while underesti-
mating bone loss in the ovx female. Moreover, cortical bone
loss in the orch rat model, in contrast to changes in cancellous
bone, is due to failure to gain new bone and not to net bone
loss. These gender-specific responses in cortical bone volume
are particularly important during active growth but less sig-
nificant in elderly, slow-growing rats (209, 220) (Table 6). In
older rats, longitudinal bone growth does not decrease after
orch (205, 206, 209).

As summarized in Table 6, castration induces postmeno-
pausal-like bone loss in the cancellous bone compartment in
both genders, irrespective of age or strain of the rat. The
intracortical bone compartment is relatively resistant to sur-
gical castration, whereas the responses at the periosteal site
and the growth plate appear to be sexually dimorphic, es-
pecially in younger rats, with androgens stimulating and
estrogens inhibiting periosteal bone expansion.

2. Skeletal effects of gonadectomy in mice. Reduced cortical bone
growth, as described in rats, has also been observed in male
orch mice (70, 226, 227). Female mice, in contrast to rats, do
not experience significant cortical bone expansion after ovx
(228, 229).

In cancellous bone, both ovx (228–231) and orch (66, 70,
188, 227, 231) induce bone loss. This cancellous bone loss is
associated with elevated markers of bone turnover (70, 229),
and ovx and orch mice are therefore increasingly being ac-
cepted as animal models for the study of steroid action in
postmenopausal-like osteoporosis (139).

C. Skeletal effects of androgen replacement in rodents

1. Skeletal effects of androgen replacement in rats

a. Effects of aromatizable and nonaromatizable androgens. The
aromatizable androgen T is a very effective bone-sparing
agent. T not only fully prevents cancellous bone loss in orch
rats (208, 209, 221) but is also bone-sparing in ovx rats (232),
even at subphysiological concentrations (233) (Fig. 5) and
irrespective of age. In addition, T antagonizes periosteal
expansion in ovx rats (234), but increases periosteal bone
formation in orch rats (209, 221, 234) (Table 7). Weaker aro-
matizable androgens, such as DHEA (223, 235) and andro-
stenedione (218, 236), are evidently bone-sparing in the ovx
rat model but have not been studied in male orch rats (Table
7). In the ovx rat model, bone protection by these androgens
is exerted through the AR and not the ERs, as illustrated by
the fact that the effect is blunted by concomitant adminis-
tration of AR antagonists but not by aromatase inhibitors or
ER antagonists (218, 235, 236).

The nonaromatizable androgen DHT also exerts bone-
sparing action in orch (208, 209, 234, 237) and ovx rats (235,
238, 239) (Table 7). However, DHT appears to be less effective
than T in the elderly orch rat model (208, 237), in particular
on cortical bone (Fig. 5). In this model, higher doses of DHT
than T are indeed needed to obtain at least some bone-
protective action on cancellous bone, but this occurs at the
expense of side effects like hypertrophy of the ventral pros-

tate and seminal vesicles. Moreover, high-dose DHT fails to
prevent orch-induced cortical thinning (237).

In conclusion, in both ovx female and orch male rats,
aromatizable and nonaromatizable androgens show bone-
protective action, especially at cancellous bone sites. Non-
aromatizable androgens seem to be less effective than aro-
matizable androgens. A possible explanation for the relative
lack of efficacy of nonaromatizable androgens compared
with aromatizable androgens may be the aromatization of
the latter via estrogens and stimulation of the ERs.

b. Effects of estrogens. The bone-sparing effects of aroma-
tizable androgens may depend on activation of the AR, the
ERs, or both. Estrogens (including phytoestrogens) have
well-documented bone-sparing effects, not only in ovx rats
(204, 232, 235, 239–242) but also in orch rats (209, 213, 237)
(Table 7).

Overall, in gonadectomized rat models, aromatizable and
nonaromatizable androgens and estrogens (Table 7) appear
to be bone-sparing in the cancellous bone compartment, ir-
respective of gender or age. Table 7 also indicates that sex
steroid action on cortical bone is not only less well docu-
mented but also less consistent. Both androgens and low-
dose estrogens tend to stimulate cortical bone, however only
in male rodents.

2. Skeletal effects of sex steroids in mice. T effectively prevents
cancellous bone loss in orch mice (70, 188). DHT (96) and
estrogens (66, 70, 96, 228, 231) also appear to be bone-sparing
after castration, in both genders. Similar bone-sparing effects
have been observed with phytoestrogens in ovx (243) and
orch mice (244). So, in accordance with experiments in rats,
androgens and estrogens both protect against cancellous
bone loss in mice, irrespective of gender. Additionally, T and
estrogens increase the cortical area in orch mice (226, 245).

D. Skeletal effects of selective manipulation of estrogen and
androgen action in rodents

1. Effects of selective pharmacological modulation in rats. Ad-
ministration of AR antagonists, ER antagonists, SERMs, and

FIG. 5. In the aged orch male rat model, subphysiological T replace-
ment, which only partially prevents atrophy of ventral prostate and
seminal vesicles, is already bone-sparing (233). In contrast, only su-
praphysiological doses of DHT, resulting in hypertrophy of androgen-
sensitive organs, prevent cancellous bone loss (237). The difference in
bone-sparing capacity between T and DHT may be related to the fact
that T can be aromatized in bone and activates one or both ERs.
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aromatase inhibitors will selectively interfere with the AR,
the ERs, and the aromatization of androgens into estrogens,
respectively (Fig. 1).

Aromatase inhibitors impair both skeletal development
(cortical expansion) and maintenance (integrity of the can-
cellous compartment) in male rats (47, 48) (Table 8). The
bone-phenotypic changes induced by administration of an
aromatase inhibitor are thus similar to those observed after
orch, although bone turnover seems to be less elevated.
Moreover, E2 prevents bone loss induced by an aromatase
inhibitor in male rats, supporting the concept that pharma-
cological administration of estrogen is protective for male
bone (49).

Administration of a selective ER antagonist, ICI 182,780,
which induces cancellous bone loss in female intact and
estrogen-repleted ovx rats (40, 57, 58), does not impair skel-
etal homeostasis in T-supplemented orch rats (59) or intact
male rats (60) (Table 8). Yet, SERMs, some of which are being
used in the treatment of postmenopausal osteoporosis, have
been reported to restore ovx-induced bone loss in female rats
(246, 247) (Table 7) as well as orch-induced (Table 7) and
age-related bone loss (Table 8) in male rats (248, 249). Sim-
ilarly, tibolone, a drug with mixed androgenic, estrogenic,
and progestogenic properties, prevents bone loss in ovx rats
(212) (Table 7). The bone-sparing effect of tibolone is reversed
by concomitant administration of an antiestrogen but not by
an antiprogestogen or antiandrogen, suggesting that bone
protection by tibilone after ovx occurs through the ER path-
way (232).

The skeletal effects of AR antagonists in rats are not con-
sistent (Table 8). In older studies, AR antagonists like flut-
amide or cyproterone acetate were found to induce bone loss
in rats, irrespective of gender; however, in these studies, bone
mass was only assessed by bone calcium content or kinetics
(36, 37). Several histomorphometric studies have reported
significantly reduced bone formation or an increase in bone
resorption after AR antagonist administration, but without
concomitant bone loss (38–40). Confirmation of AR antag-
onist-induced osteopenia by methods such as histomor-
phometry is therefore required. Finally, finasteride, a type II
5�-reductase inhibitor that blocks the conversion of T into
DHT, does not interfere with skeletal homeostasis in male
rats (33) (Table 8).

In conclusion, selective modulation of the AR and ER
pathways generally supports the concept of a dual mode of
androgen action (through both the AR and ER pathways), at
least in cancellous bone, both in male and female rat models
(Table 8). Effects of AR antagonists in rats, on the other hand,
are less well-established.

2. Effects of selective pharmacological modulation in mice. In intact
male mice, the AR antagonist casodex does not affect bone
density, whereas another AR antagonist, epitestosterone,
which is also a 5�-reductase inhibitor, decreases bone density
(250). The AR antagonist cyproterone acetate prevents orch-
induced bone loss, suggesting that this agent may act as an
AR agonist in bone (251). SERMs also prevent orch-induced
(227, 231) and ovx-induced bone loss (231, 252) in mice.
Overall, these studies (although limited in number) provide
further evidence for a similar action of sex steroids in can-

cellous bone. Along these lines, the activator of nongenomic
estrogen-like signaling, estren, has a similar (or even greater)
anabolic effect on (especially cortical) bone than DHT in male
orch mice or than E2 in female ovx mice, despite a much
lower affinity for the ER (96) (see also Section II). These effects
of estren, although obtained with a much higher dose than
with E2 and DHT, occur without stimulation of reproductive
organs in either sex.

E. Skeletal effects of selective manipulation of androgen and
estrogen action in transgenic mice

1. Description of transgenic animal strains. The cyp19 aromatase
gene has been inactivated [aromatase knockout (ArKO)
mice] by two independent groups (253, 254), and a similar
skeletal phenotype has been reported (54–56). ER� has been
inactivated by three independent groups [ER� knockout
(BERKO) mice] (79, 255, 256), and the skeletal phenotypes of
all three mouse strains are rather similar (64–67, 73, 75–81,
98). Two independent groups have inactivated ER� [ER�
knockout (ERKO) mice] (256, 257). The first and most studied
ERKO mouse strain was generated in the laboratories of
Korach and Smithies (257). A recent study indicates that
these mice are not completely ER�-inactivated (258), as sup-
ported by the observation that they express one or two N-
terminally modified ER� transcripts associated with minor
ER activity regarding uterine weight and endothelial nitric
oxide production (258). The remaining ER� activity is sug-
gested to be mediated via a truncated ER� with remaining
AF-2 activity, whereas there is no AF-1 activity left (258). This
truncated ER� isoform has been detected in bone of these
mice and has been shown to have effects on gene transcrip-
tion in cultured human osteoblasts (259). These mice will be
referred to as ERKOAF-1�/� because they do not have any
remaining AF-1. The second ER�-inactivated mouse model
was developed in the laboratory of Chambon (256). There is
no remaining ER� activity in these mice, and both AF-1 and
AF-2 activity are absent in these animals, which will be
referred to as ERKOAF-1/AF-2�/�. The skeletal phenotype has
been reported for both the ERKOAF-1�/� mice (62–67, 69, 260,
261) and the ERKOAF-1/AF-2�/� mice (46, 71–74, 98). Most
skeletal phenotypes (including the male skeletal phenotype
and the skeletal responses to estrogen treatment in female
ovx mice) are identical for the ERKOAF-1�/� (66, 67, 70) and
the ERKOAF-1/AF-2�/� mice (72, 73). However, a clear dif-
ference between the two ERKO models is seen in female
gonadal intact mice (see Section IV.E., 2 and 3). Possible
factors that might explain the differences between the two
ovarian intact female ERKO models include: 1) differences in
genetic background; 2) differences in dietary/environmental
estrogen; 3) differences in the feedback regulation of sex
steroids between the ERKOAF-1�/� and ERKOAF-1/AF-2�/�

mice, in which both E2 and T are dramatically increased but
the magnitude of this disturbance might differ between
the two ERKO models; 4) remaining AF-2 activity in
ERKOAF-1�/� mice; and 5) other unknown reasons.

Mice with inactivated ER� and ER� [double ER knockout
(DERKO)], developed in two independent laboratories, have
been reported to have rather similar skeletal phenotypes,
both in intact mice and in estrogen-treated gonadectomized
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mice (64–67, 72, 73, 98). AR knockout mice (ANDRKO mice)
have recently been developed by two independent groups
using the cre/loxP system (42–44), and their skeletal phe-
notypes have recently been described (42–44, 262, 263).

It is of importance to note that the sex steroid levels (both
E2 and T) are increased in ERKO and DERKO, due to dis-
turbed feedback regulation (65, 73, 264). In contrast, the skel-
etal phenotype of single ER� inactivation is not influenced by
altered sex steroids levels. By comparing the skeletal phe-
notype of wild-type, ArKO, BERKO, ERKO, DERKO, and
ANDRKO mouse strains, it may be possible to gain new
insight in the relative importance of the AR, ER�, and ER�
in mediating the skeletal effects of androgens. The different
transgenic mouse strains described in this section are inac-
tivated from birth, which results in disturbed skeletal growth
and maturation. Thus, the adult skeletal phenotype in these
mice is a combination of effects on growth/maturation and
adult bone remodeling. Future transgenic mouse models
with inducible gene inactivation will be useful in separating
the effects on growth/maturation from the effects on adult
bone remodeling and will therefore be more relevant to fur-
ther explore the protective effect of sex steroids on the adult
skeleton. Nevertheless, the currently available transgenic
mouse models have already been very informative. In the
following section, the effects on longitudinal appendicular
skeletal growth as well as the effects on cortical and cancel-
lous bone in these mice will be discussed.

2. Longitudinal appendicular skeletal growth

a. Females. ER�-inactivated female mice develop increased
femoral length after sexual maturation (65, 73, 75, 78). Ac-
tually, the normal length difference between males and fe-
males is not observed in young adult female BERKO mice
(65, 75, 76, 78) (Fig. 6A). An altered length of femur is often
associated with a disturbed GH-IGF-axis (265–268). Interest-
ingly, serum levels of IGF-I are increased in young adult
female BERKO mice and correlate to the effect on femoral
length, which might indicate that ER� is an inhibitor of the
GH-IGF-I axis (65). However, GH secretion has not yet been
studied in these mice. Several independent studies using
female ERKOAF-1�/� mice have demonstrated that these
mice have a reduced length of the femur, which develops
during sexual maturation and is still present at 18 months of
age (62, 63, 65, 260). In contrast, in one recent study in female
ERKOAF-1/AF-2�/� mice, no effect on femoral length was seen
at 16 wk of age (73). The length of the femur is largely
unchanged in adult female ArKO (54) and DERKO (65, 73)
mice. In summary, ER� represses longitudinal appendicular
skeletal growth during sexual maturation in female mice.
Some (but not all studies) in ERKO models indicate that ER�
may stimulate appendicular skeletal growth in female mice.
Finally, a normal appendicular skeletal growth is observed
in the absence of the opposing effects of ER� and ER� ac-
tivation as seen in female ArKO and DERKO mice.

b. Males. The longitudinal appendicular skeletal growth is
unchanged in male BERKO mice (64, 73, 75) (Fig. 6A), al-
though several independent studies using male ERKOAF-1�/�

mice have clearly demonstrated that these mice have a reduced
appendicular skeletal growth during sexual maturation (62–

64). The decreased appendicular skeletal growth of these mice
is associated with decreased serum levels of IGF-I (64). The
appendicular growth of the male ERKOAF-1/AF-2�/� mice has
been analyzed by two independent groups with conflicting
results, demonstrating unchanged growth in one study (73)
and, similar to all the ERKOAF-1�/� studies, decreased growth
in another study (46). Thus, most available data indicate that the
appendicular growth is decreased in male ERKO mice. Femoral
length is also decreased in male ArKO (54) and DERKO (65, 73)
mice, whereas bone length is reported to be unchanged in male
ANDRKO mice (263). In summary, ER activation, but not AR
activation, is involved in the regulation of male longitudinal
appendicular skeletal growth in mice. Most studies indicate that
the effect of estrogens is mediated via ER� and not via ER� (46,
62–64, 75) (Fig. 6).

3. Cortical bone

a. Females. Studies in two different BERKO mouse strains
have demonstrated an increase in cortical cross-sectional
bone area due to increased radial cortical bone growth
(Fig. 6B). This effect is seen after sexual maturation (65, 75,
78, 81). In contrast, no significant effect on cortical bone
parameters was found in female BERKO mice, developed
in a third laboratory (73). In line with the effects on ap-
pendicular skeletal growth, the effect on cortical thickness
differs dramatically between the gonadal intact female
ERKOAF-1�/� mouse model (65), a mouse model with
increased thickness, and the gonadal intact female

FIG. 6. Increased length (A) and increased cortical cross-sectional
area (B) of the femur in young adult female but not male BERKO mice
(open bars) compared with wild-type mice (filled bars). Thus, the
skeletal sexual dimorphism is diminished in the ER� �/� mice com-
pared with wild-type mice. LOW, Low BMD; HIGH, high BMD. [Panel
A is reproduced with permission from S. Windahl et al.: J Clin Invest
104:895–901, 1999 (75).]
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ERKOAF-1/AF-2�/� (73) with decreased thickness. The cor-
tical thickness is similar in the female ERKO and DERKO
mice. Female ArKO mice have a decreased cortical cross-
sectional bone area (56). In summary, it is clear that ER�
activation decreases cortical thickness in female mice and
that estrogen deficiency, due to aromatase inactivation,
results in a decreased cortical area in female mice. The role
of ER� in the regulation of cortical bone in gonadal intact
female mice is unclear, because conflicting results have
been presented.

b. Males. Cortical bone parameters reflecting the size of the
cortical bone, including periosteal circumference, endocor-
tical circumference, cortical thickness, and cortical cross-
sectional area, are decreased in male ERKO (64, 70, 73),
DERKO (64, 73) (Fig. 7), and ArKO mice (56). The decreased
amount of cortical bone is associated with a reduced peri-
osteal apposition rate (73). In contrast, the cortical bone pa-
rameters are unchanged in male BERKO mice (64, 73, 75).
Recent data indicate that male ANDRKO mice have a de-
creased cortical bone area (44, 263). In summary, ER� and AR
but not ER� enhance cortical radial bone growth in male
mice.

4. Cancellous bone in gonadal intact mice

a. Females. Surprisingly, female BERKO mice are protected
against age-related cancellous bone loss (73, 76, 78, 80). This
finding indicates that ER�, in the presence of low age-related
estrogen levels, might act as a competitor for the stimulatory
effect of ER� on cancellous bone in old female mice. An
inhibitory role of ER� in the presence of ER� is supported by
the observation that ER� reduces ER�-regulated gene tran-

scription (69). However, the estrogenic response to pharma-
cological treatment with estrogen in gonadal intact female
BERKO mice is not significantly altered compared with wild-
type mice (81). Unexpectedly, female gonadal intact ERKO
mice have an increased amount of cancellous bone (65, 73),
probably caused by increased serum levels of T acting via the
AR (98). Furthermore, female ERKO mice have masculinized
livers, which also might affect bone mass accrual through
circulating IGF-I (269). Female gonadal intact DERKO (65, 73)
and ArKO mice (54–56) have a decreased amount of can-
cellous bone. These findings indicate that ER activation as
well as AR activation has the capacity to preserve the amount
of cancellous bone in gonadal intact female mice.

b. Males. Cancellous bone is unaffected in male BERKO
mice (64, 73, 75, 76). Unexpectedly, the amount of cancellous
bone is increased, associated with reduced bone turnover in
adult gonadal intact male ERKO and DERKO mice (66, 70,
73). The increased cancellous bone mass is caused by ele-
vated T levels acting via the AR, because treatment with an
antiandrogen results in cancellous bone loss in the gonadal
intact male ERKO mice (66, 73, 98). Male ArKO mice (55, 56)
and ANDRKO mice (42–44, 263) have reduced cancellous
bone mass. In the ANDRKO model, this osteopenia is asso-
ciated with an increased bone turnover (42–44, 263). Regard-
ing male ArKO mice, one study has reported increased bone
resorption (56), whereas another group has documented de-
creased bone turnover markers (both formation and resorp-
tion) (55). Taken together, these data suggest that the AR but
not ER� is required for the maintenance of cancellous bone
mass in males. The specific role of ER� is difficult to deter-
mine using the gonadal intact male ERKO mice because their
T levels are increased. Indeed, all studies on gonadal intact
animals with mutated sex steroid receptors have to be con-
sidered carefully because endogenous sex steroid levels
might be modified.

5. Effect of sex steroids on cancellous bone in gonadectomized mice.
In the experiments described in this section, adult mice of the
different genotypes were gonadectomized, and the effects of
E2 (activating the ERs), T (potentially activating both the AR
and the ERs) or DHT (activating the AR) on cancellous bone
were investigated.

a. Females. Ovx-induced cancellous bone loss in BERKO
mice is prevented by treatment with either E2 or DHT
(Refs. 67, 72, 98; and M. K. Lindberg, and C. Ohlsson,
unpublished personal data). In contrast, physiological E2
replacement therapy exerts no effects (67) or minor effects
(72, 98) on cancellous bone in ovx ERKO mice. However,
pharmacological treatment of ovx ERKO, reaching very
high concentrations of E2, results in an increased amount
of cancellous bone (98). The amount of cancellous bone is
not increased by physiological E2 treatment in ovx DERKO
mice (67, 98), whereas this treatment restores the cancel-
lous bone in female ArKO mice (56). Both DHT and T
increase the cancellous bone mass in ovx ERKO and
DERKO mice (Ref. 98; and M. K. Lindberg, and C. Ohlsson,
unpublished personal data). These findings seem to indi-
cate that the cancellous bone-sparing effect of physiolog-
ical levels of estrogens in ovx mice is mainly mediated via

FIG. 7. Effects of ER inactivation on skeletal growth in gonadal intact
male mice. Representative DXA scans (A) and middiaphyseal pQCT
scans (B) of femora in young adult wild-type, ERKO, BERKO, and
DERKO mice. LOW, Low BMD; HIGH, high BMD. Femoral length
(A), a measure of appendicular growth, and cross-sectional area (B)
are significantly reduced in ERKO and DERKO mice. [Reproduced
with permission from O. Vidal et al.: Proc Natl Acad Sci USA 97:
5474–5479, 2000 (64). © National Academy of Sciences, USA.]
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ER�. AR activation has the capacity to increase cancellous
bone mass in ovx mice, but the physiological role of this
effect is unclear (Refs. 96 and 98; and M. K. Lindberg,
and C. Ohlsson, unpublished personal data).

b. Males. Orch-induced cancellous bone loss is prevented
by either E2 or DHT in BERKO mice and by either T or
DHT, but not by E2, in ERKO and DERKO mice, demon-
strating that (in contrast to ER� activation) ER� and AR
have the capacity to increase the amount of cancellous
bone in male mice (66, 70, 98, 245). T (in contrast to DHT)
increases the amount of cancellous bone in male gona-
dectomized ANDRKO mice, supporting the concept that
ER activation preserves the cancellous bone in the absence
of a functional AR (42, 262, 263). These findings suggest
that the AR and ER�, but not ER�, can independently
mediate the cancellous bone-sparing effects of sex steroids
in male mice.

6. Conclusion of studies in sex steroid-related transgenic mouse
models. Both ER� and the AR are involved in mediating the
effects of androgens on cortical cross-sectional area and
adult cancellous bone remodeling, although only ER�
regulates longitudinal appendicular growth in male mice
(Tables 9 and 10). ER�, however, is not involved in the
regulation of the male skeleton. In contrast, both ER� and
ER� are of importance for the regulation of the female
skeleton. The ER� is the main receptor responsible for the
cancellous bone-sparing effect of physiological levels of
estrogens in female mice. However, ER� activation sup-
presses the cancellous bone mass in old female mice, in-
dicating that ER� suppresses the cancellous bone-sparing
effect of ER� in female mice with low serum levels of
estrogens. The AR has the capacity to preserve cancellous
bone in female mice, but its physiological role in female
bone metabolism is unclear.

F. Skeletal effects of androgen resistance in rodents

1. Androgen resistance in rats. Experiments in androgen-
resistant testicular feminized male (Tfm) rats provide fur-
ther support for the concept of a dual mode of action of sex
steroids. Tfm rats are unresponsive to androgens due to a
single base mutation in the LBD of the AR gene. These

genotypic male but phenotypic female rats have a more
female-like (cortical) bone structure (270). In contrast to
orch rats, they do not experience spontaneous cancellous
bone loss. Vanderschueren et al. (41) have hypothesized
that bone loss in these Tfm rats is prevented by the in-
creased serum levels of estrogens. Indeed, after orch, Tfm
rats lose bone, suggesting the importance of T as a pre-
cursor for estrogens in the protection of bone (41). Again,
androgen-induced extraskeletal effects may have impor-
tant indirect skeletal consequences in these rats. In the Tfm
rat, GH secretion follows a more female-like pattern be-
cause of lack of neonatal androgenization (270) (see also
Section V). This female-like GH profile may explain, at least
partly, the more female type of bone structure. Moreover,
high estrogen concentrations in Tfm rats may further in-
hibit growth.

The hypothesis that androgens may prevent cancellous
bone loss via both AR and ER pathways is thus supported by
experiments in the Tfm rat model. According to the Tfm
phenotype, cortical bone structure depends on a functional
AR. In Tfm rats, however, female-like GH secretion and an
increased degree of aromatization may be confounding fac-
tors creating a growth-inhibitory environment.

2. Androgen resistance in mice. Tfm mice, on the other hand,
have a high-turnover cancellous bone phenotype (226), sim-
ilar to the phenotype observed in the ANDRKO mouse

TABLE 10. Summary of the role of ER�, ER�, and AR activation
on skeletal parameters in mice with different sex steroid-related
gene inactivations

ER� ER� AR

Female mice
Longitudinal skeletal growth ? � ND
Cortical bone area ? � ND
Effect on cancellous bone � (�/�) �

Male mice
Longitudinal skeletal growth � 0 0
Cortical bone area � 0 �
Effect on cancellous bone � 0 �

�, Stimulation; �, inhibition; (�/�), stimulatory in the absence of
ER� but inhibitory in old mice in the presence of ER�; 0, no effect; ?,
conflicting results presented depending on which female gonadal in-
tact ERKO model analyzed; ND, not determined. For references, see
text.

TABLE 9. Summary of the skeletal phenotypes in mice with different sex steroid-related gene inactivations

Longitudinal
skeletal growth

Cortical
bone area

Cancellous bone

Intact mice Effect of E in gx Effect of T in gx Effect of DHT in gx

Female BERKO � � (�) Yes ND Yes
ERKO ? ? � Minor Yes Yes
DERKO 0 ? � No ND Yes
ARKO 0 � � Yes ND ND

Male BERKO 0 0 0 Yes ND Yes
ERKO � � � No Yes Yes
DERKO � � � No ND Yes
ArKO � � � Yes ND ND
ANDRKO 0 � � ND Partial No
Tfm ? ? � Yes Partial ND

�, Increased; (�), increased in old mice; �, decreased; 0, no effect; minor, effect of very high but not physiological concentrations of estrogen;
?, conflicting results presented depending on which gonadal intact female ERKO model analyzed and the results are difficult to interpret due
to increased sex steroid levels; ND, not determined; gx, gonadectomy; E, treatment with physiological levels of estrogen; T, treatment with
physiological levels of testosterone; DHT, treatment with physiological levels of 5�-dihydrotestosterone. For references, see text.
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model (42, 43, 262). In line with observations in ANDRKO
mice, Tfm mice have low levels of T and E2 (as opposed to
the high levels of T and E2 in the Tfm rat), which may
confound both models. Sex steroid replacement in orch Tfm
mice allows further investigation of the role of the AR in
mediating T action in this model. In orch Tfm mice, cortical
bone appears to be completely unresponsive to T action,
whereas cancellous bone is preserved by T (226) (Table 9).
Again, these data suggest that T action on cortical bone is at
least partly AR-dependent, whereas T action on cancellous
bone may depend on both AR and ER activation.

G. Animal data in support of a dual mode of androgen
action on the skeleton

Androgens (both aromatizable and nonaromatizable) are
able to maintain skeletal integrity of the cancellous compart-
ment in rodents via the AR, irrespective of age and gender.
Estrogens also prevent cancellous bone loss (through acti-
vation of the ER� only) in male rodents, even at low con-
centrations. This has led to our concept of a dual mode of
action of androgens on bone via both ER� and the AR,
although the relevance of ER� activation remains uncertain.
In addition, androgens are able to stimulate bone formation
at the outer periosteal bone surface, at least in male ro-
dents and during skeletal growth. Again, in this process of
androgen-mediated periosteal bone formation, both the AR
and ER� are involved. In female rodents, on the other hand,
both ER� and ER� are of importance for skeletal develop-
ment and maintenance.

V. Indirect Mechanisms of Action of Androgens with
Skeletal Implications

Sex steroids may differentially and sex-specifically regu-
late longitudinal and radial bone growth in rodents, leading
to the typical sexually dimorphic skeletal changes (longer
and broader bones in males) at the end of puberty (see Section
IV). These opposite effects of androgens and estrogens may
depend on stimulation of sex steroid receptors expressed
locally in the skeleton (see Section II.D). Alternatively, an-
drogens may also indirectly affect skeletal homeostasis
through interactions with body growth, body composition,
and the GH-IGF-I axis.

A. Androgens, body growth, and body composition

Androgen-induced changes in growth and body com-
position may have an important impact on skeletal
changes: in growing rats, gain in body weight (associated
with increased food intake) is impaired after orch in most
(33, 47, 205, 207, 219, 224, 271), but not all studies (208, 210,
234), whereas the opposite is observed in the ovx rat (57,
58, 203, 204, 271, 272) (Table 6). These opposite changes in
body weight are fully prevented by androgens in male and
by estrogens in female gonadectomized growing rodents
(Table 7). It is important to emphasize that body weight
remains mostly unchanged in older gonadectomized rats
(205, 206, 221, 272) (Table 6). Male rats also lose muscle
mass and gain fat mass after orch (233, 237). It is therefore

tempting to speculate that orch-induced muscle loss may
lower mechanical strain. Decreases of longitudinal and
radial bone growth after orch might therefore essentially
represent an adaptation of skeletal modeling during
growth to orch-induced changes in mechanical strain
rather than a direct action of sex steroids on bone. The
effects of gonadectomy-induced changes in body weight
and composition on skeletal modeling and remodeling
remain hypothetical but can and should be further ex-
plored. Conversely, increased skeletal growth in response
to androgens (Table 7) might reflect increased mechanical
loading. In line with this assumption, actions of T on bone
and lean body mass (a surrogate for muscle mass) seem to
be closely interrelated, at least in orch rodent models (233).

In addition, several links exist between adipocytes and
bone. There is increasing evidence for some adipocytokines,
such as leptin, to be the mediators via the central nervous
system, in particular the nucleus paraventricularis (273). The
communication between cells of the immune system occurs
via very similar cytokines and receptors (e.g., RANK-
RANKL-OPG) as the ones used by the different bone cells.
Moreover, there are several arguments for a direct interaction
between immune cells (e.g., B and T lymphocytes) and bone
cells (274). Because sex steroids have a direct influence on
immune cells (androgens and estrogens influence hemato-
poiesis and notably B lymphopoiesis), indirect sex steroid
effects on bone via immune cells might be plausible but need
further exploration.

In humans, androgens stimulate longitudinal growth in
the male, whereas estrogens appear to have a biphasic effect
in both sexes (6). Low-dose estrogens stimulate the pubertal
growth spurt, but higher concentrations inhibit linear growth
and promote growth plate closure. Males may therefore be
taller and have a higher peak bone mass because they are
exposed to relatively lower estrogen concentrations during
a longer prepubertal and pubertal period. Although it is
assumed that sex steroids have similar actions on radial as on
longitudinal growth, this remains to be established in
humans.

Puberty in males is characterized not only by increased
longitudinal growth but also by a greater gain in muscle mass
compared with females (275). Increased muscle mass may
result in enhanced mechanical loading, which is considered
to be the most important stimulus for skeletal modeling
(276). It is therefore tempting to speculate that changes in
body composition (more muscle, less fat) contribute to
greater bone size in men. However, the extent to which
androgens increase muscle and thereby indirectly stimulate
skeletal modeling remains unknown. Although T supple-
mentation stimulates fat-free mass and muscle size in hy-
pogonadal men (277), the skeletal implications of this type of
anabolic response remain to be established. In vitro data
support the concept that mechanical strain and sex steroids
might impact on bone through similar modes of action. ER�
has indeed been shown to mediate the strain-related prolif-
eration of osteoblasts of both sexes (278, 279), but the rele-
vance of this interaction between mechanical strain and sex
steroids in vivo remains unclear.
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B. Androgens and the GH-IGF-I axis

Postnatal growth is primarily regulated by the GH-IGF-I
axis. Inhibition of IGF-I action—either directly (280, 281),
or indirectly via disruption of the GH receptor (282, 283)—
dramatically decreases growth rate in male and female mice,
similar to the growth delay observed in GH-deficient or
GH-resistant humans (265). This decrease in growth rate
affects cortical bone (280, 283) but has no effect on cancellous
bone mass (280, 283, 284). Interaction with the GH-IGF-I axis
may therefore provide yet another indirect mechanism by
which sex steroids regulate sexually dimorphic skeletal
changes, including longitudinal bone growth and radial cor-
tical bone growth (166, 285). The concept that a functional
GH-IGF-I axis is essential for skeletal sexual dimorphism is
supported by observations in the GH receptor or IGF-I
knockout mice, which are both characterized by the absence
of gender differences in growth rate and skeletal size. There-
fore, the male cortical phenotype requires a functional and
active GH-IGF-I axis. This axis is already differently im-
printed in males and females during the neonatal period
(286). Such imprinting depends on neonatal androgen se-
cretion. The importance of androgen programming of the
GH-IGF-I system for male growth is supported by observa-
tions in androgen-resistant Tfm rats; in these androgen-
resistant male rats without neonatal androgen secretion,
female-like GH profiles are associated with female-like
growth rates and bone size (285) (see also Section IV).

During puberty, a rise in GH-IGF-I activity occurs in both
sexes. After puberty, serum IGF-I levels tend to be higher in
men and male rats compared with females (287, 288),
whereas no gender-related difference has been observed in
mice (65, 76, 280).

High-dose estrogens lower serum levels of IGF-I in the rat
(49, 209, 289), whereas low doses, via a stimulation of GH
secretion, are stimulatory in both sexes (237). In humans,
androgens indirectly stimulate IGF-I secretion after aroma-
tization into estrogens (290). Furthermore, aromatase inhib-
itors lower serum IGF-I levels (49), whereas antiestrogens
like ICI 182,780 that do not penetrate the blood-brain barrier,
do not affect serum IGF-I levels in male rats (59). These
findings indicate that androgens are centrally aromatized,
followed by an ER-mediated regulation of GH secretion.
Estrogens stimulate GH via ER�, as indicated by the lower
serum IGF-I in both genders of ERKO mice (see Section IV).
In addition, the growth-limiting effect of high-dose estrogens
seems to depend more on an interaction with the GH-IGF-I
axis than the growth-stimulatory action of androgens. Indeed,
the expected stimulation of radial bone growth does not occur
after ovx in GH-deficient and hypophysectomized female rats,
whereas periosteal bone formation and growth rate decrease
after orch in GH-deficient male rats (224, 225, 291). In addition,
the nonaromatizable androgen DHT may stimulate longitudi-
nal growth in boys suffering from delayed puberty without
concomitant increases of serum IGF-I (292).

Taken together, both human and animal data (although
limited in number) support the concept that androgens, apart
from a direct action on bone cells, also stimulate (skeletal)
growth indirectly after aromatization into estrogens and
stimulation of pituitary GH secretion.

VI. Effects of Androgens on the Human Skeleton

A. Skeletal consequences of castration, male hypogonadism,
and androgen resistance in men

1. Skeletal effects of castration in men. Surgical (orch) or chem-
ical (administration of GnRH agonists) castration induces a
complete and sudden decline in the levels of sex steroids in
men. Such androgen deprivation therapy in adult men with
advanced prostate cancer is followed by rapid bone loss
(293), similar to the loss of skeletal integrity in women after
surgical ovx or during early menopause. Lumbar spine bone
density decreases by about 5–10% within 1 yr after castration
(294–302), with a continuing further decrease of bone loss
thereafter. More recently, significant bone loss, albeit to a
lesser extent, has also been confirmed at appendicular skel-
etal sites, including the hip (296, 298–301, 303–305) and ra-
dius (299, 306, 307). Recent data suggest that many men with
prostate carcinoma may already have reduced bone densities
before androgen deprivation therapy (308). In these patients,
additional bone loss after castration is likely to further in-
crease their risk of osteoporotic fractures (303, 309–312)
(Fig. 8). In addition to the decline in bone density, androgen
deficiency-induced changes in body composition, including
decreased lean body and muscle mass (299, 300, 313), may
further enhance fracture risk.

Castration increases bone turnover, as assessed by bio-
chemical parameters of bone resorption and formation (294,
295, 298, 299, 301, 302, 307). These observations indicate that
the mechanism of bone loss in androgen-deficient men is
similar to that induced by gonadal insufficiency of women or
animals. An imbalance in favor of bone resorption induces
net bone loss, especially at cancellous bone sites with large
remodeling surfaces. Histomorphometric confirmation of
this high turnover bone loss in these men is still lacking, but
suppression of bone turnover preserves bone density. In
particular, the use of bisphosphonates—including etidronate
(301), iv pamidronate (298), or zoledronic acid (314)—has
been shown to prevent bone loss in patients with prostate
carcinoma and should therefore be considered after castra-
tion. Overall, these findings support the concept that sex

FIG. 8. Cumulative incidence of first osteoporotic fractures in men
with prostate cancer with and without orchidectomy. Intervals are
times from castration to last follow-up or to first osteoporotic fracture
and from diagnosis, respectively. Numbers in parentheses indicate
men remaining at various intervals. [Reproduced with permission
from H. W. Daniell: J Urol 157:439–444, 1997 (303).]
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steroid deficiency in men, as in women, induces high-
turnover osteoporosis.

2. Skeletal effects of male hypogonadism. Hypogonadism is often
defined as T levels well below the normal values. Still, this
definition of hypogonadism may cause problems in some
cases due to the wide range of T levels observed. In this
section, we will discuss the skeletal effects of overt male
hypogonadism, characterized by sustained low T concentra-
tions (due to testicular and/or hypothalamic-pituitary dys-
function) and clinical manifestations of hypogonadism. In
Section VI.C.2, the skeletal impact in partially hypogonadal
men will be addressed. Men with hypogonadism have sig-
nificantly lower bone density (in particular at cancellous
bone sites like the spine) than age-matched controls (315,
316). Little is known, however, about the impact of male
hypogonadism on bone remodeling. Some data suggest that
bone resorption and, to a lesser extent, bone formation may
be increased in adult hypogonadal men, in line with obser-
vations in postmenopausal women (317), whereas other re-
ports have provided histomorphometric evidence for low
bone formation in the context of male hypogonadism (318,
319). Deterioration of the trabecular bone architecture of the
distal tibia, as determined by high-resolution magnetic res-
onance micro-imaging, was recently reported in untreated
hypogonadal men (320). In the study by Baran et al. (318),
follow-up biopsies showed increased bone formation during
supplementation with T, supporting the concept that T stim-
ulates bone formation. In addition to histomorphometric
evidence for a low rate of bone formation, Francis et al. (319)
also observed calcium malabsorption and low serum 1,25-
dihydroxyvitamin D3 concentrations in hypogonadal men.
These findings contrast with other studies, documenting nor-
mal calcium and 1,25-dihydroxyvitamin D3 metabolism in
hypogonadal men (317) and suggesting that male hypo-go-
nadism may affect skeletal homeostasis independently of cal-
cium and vitamin D. Experiments using the orch rat model
support this assumption (209).

The extent to which low bone density in the context of male
hypogonadism is associated with an increased risk for frac-
ture remains to be clarified. Case control studies report a
higher than expected prevalence of hypogonadism in men
with spine or hip fracture (321, 322). In men with hip frac-
tures, increased bone resorption (but not the low formation
rate) has even been documented to be a direct consequence
of their T deficiency (323). However, prospective evidence
to establish a cause-and-effect relationship between hypo-
gonadism and future fracture risk is currently lacking.

Male hypogonadism can be due to a variety of diseases,
which may all have a specific impact on skeletal integrity.
Nevertheless, comparative data suggest similar impairment
in bone density in men with different etiologies of hypo-
gonadism, suggesting that hypogonadism per se and not the
primary disease entity is responsible for the bone loss (324).

In young hypogonadal men, skeletal growth is impaired
and, in line with animal data, bone mass and density will be
even more severely affected. Decreased radial, spinal, and
femoral bone densities and lower peak bone mass have been
reported in adult men with delayed puberty (325–327), but
areal bone density assessment based on projectional methods

should be interpreted with caution. These methods may
overestimate the bone mineral deficit during growth because
of the associated failure to expand bone during delayed
puberty. In this regard, measurements of volumetric density
using pQCT are more appropriate. In adult men with a
history of late puberty, pQCT fails to show decreased bone
density, indicating that impairment of bone size may be more
important in these men than changes in bone tissue compo-
sition (328).

Isolated hypogonadotropic hypogonadism (IHH) repre-
sents the most complete and early form of male hypogonad-
ism. In contrast to most other types of hypogonadotropic
hypogonadism, men with IHH have isolated sex steroid de-
ficiency without other metabolic abnormalities, making IHH
a good model to examine the effects of sex steroids and sex
steroid deficiencies in men. Compared with age-matched
controls, patients with IHH have lower bone density at the
spine and radius, not only before but also after growth plate
closure (329). Interestingly, both areal and volumetric bone
density are reduced. This suggests that true bone composi-
tion is impaired in the context of IHH. In these patients,
assessing bone turnover has produced inconsistent results,
demonstrating histomorphometric evidence for low-turn-
over osteoporosis in some patients (330) but increased levels
of markers of bone formation and resorption in others (331).

Lower bone density (at radius and spine) is well docu-
mented in hyperprolactinemic hypogonadal men as well
(332). Moreover, reversal of the hypogonadism significantly
increases cortical bone density, irrespective of the serum
levels of prolactin, suggesting that it is T deficiency and not
prolactin excess that impairs skeletal homeostasis in these
patients (333).

Finally, Klinefelter’s syndrome (KS) is the most frequent
form of hypergonadotropic hypogonadism. According to
most studies, with one exception (334), bone density is de-
creased in KS (335–339). Low bone density has even been
reported in patients who have already been receiving long-
term T replacement (338, 339), questioning the role of an-
drogen deficiency as the cause of the bone deficit (as well as
the role of androgen replacement to maintain bone density
in this patient group) and suggesting other, disease-specific
effects on bone that may be independent of the associated
hypogonadism. Varying degrees of hypogonadism have
been observed in patients with KS, and only those with
severe hypogonadism may experience bone loss (334, 337).
However, because of the small numbers of subjects and the
lack of appropriate control groups in most studies dealing
with KS, controversy is likely to persist until large prospec-
tive and controlled studies document the skeletal impact of
different degrees of hypogonadism (and their response to T
replacement).

Recently, the pivotal role of estrogens with respect to skel-
etal development and maintenance in both sexes has re-
ceived much attention (4, 5). It is now well-established that
estrogens are responsible for skeletal maturation and epiph-
yseal closure, not only in women but also in men. However,
the extent to which other components of bone formation,
including trabecular thickening and periosteal formation, are
regulated by aromatization of androgens into estrogens or
directly by androgens remains unknown. Moreover, the de-
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gree of estrogen deficiency during male hypogonadism may
vary according to the capacity to aromatize androgens. Pa-
tients with very low androgens also have limited capacity for
aromatization. Hypogonadism should therefore be regarded
as a combination of varying degrees of androgen and estro-
gen deficiency, which may impact bone differently.

3. Skeletal effects of androgen resistance in men. According to
most (340–343) but not all (344) studies, patients with the
complete androgen insensitivity syndrome (cAIS) have
lower areal bone density at the spine and hip when compared
with age- and sex-matched controls. These findings suggest
that androgens may also directly stimulate bone density via
the AR and not only indirectly, after aromatization into es-
trogens. However, bone density values in androgen-resistant
patients may be confounded by surgical castration and hor-
mone replacement therapy. In line with this assumption,
Marcus et al. (344) reported that compliance with estrogen is
an important determinant of bone density in this patient
group (Fig. 9). In addition, estrogen increases bone density
at the spine and hip in most patients with cAIS (342, 343),
although these measurements have not always been adjusted
for their tall stature. Finally, androgen resistance in humans
is not associated with impaired longitudinal growth, pro-
viding further evidence for the pivotal role of estrogens in
longitudinal bone growth and epiphyseal closure in men.
Whether androgen resistance in men affects periosteal bone
formation, as would be expected from animal research, is not
known.

Overall, bone studies in hypogonadal and androgen-
resistant men are confounded by varying states of androgen
and/or estrogen deficiency. Currently available data are par-
ticularly hampered by the inability of areal bone density
measurements to distinguish between bone size and com-
position. The specific role of estrogens and androgens in the
regulation of periosteal bone formation in humans also re-
mains unknown (345). Only recently, Ahlborg et al. (346)
have reported that the increased bone loss after menopause
in women is associated with increased periosteal apposition,

and accordingly, increased bone size (346, 347). Because bone
size is a major determinant of bone strength, further research
in this area is urgently required.

B. Skeletal effects of androgens in women

The role of androgens in female skeletal homeostasis has
not been well-established. In women, serum androgen con-
centrations vary considerably; although T concentrations are
lower than in men, serum concentrations of other, weaker
androgens like androstenedione and DHEA-S are similar
(348). Androgens may therefore contribute to clinically rel-
evant differences in bone density between women.

Androgens might stimulate skeletal development during
puberty. Most data in support of such a bone-stimulatory
action are based on a number of studies, providing evidence
for increased density in women with polycystic ovary syn-
drome (PCOS) (Ref. 349 and references therein). One of the
limitations of the PCOS model of androgen excess is the
potential confounding by differences in body mass index,
body composition, and menstrual irregularities (oligo- and
amenorrhea) that may affect skeletal homeostasis indepen-
dently of the androgen excess and are difficult to control in
the case-control design of these studies. Moreover, androgen
excess is often defined clinically by the presence of hirsutism,
which represents only a rough determinant of androgen
exposure in women. Despite these limitations, studies in
PCOS have provided increasing and consistent evidence that
hirsute women have higher peak bone density than age-
matched controls, even after correction for body mass index
(350, 351). It is important to note that this increase in bone
density has been confirmed by cancellous pQCT and thus
reflects real changes in bone tissue composition, rather than
changes in bone size. Whether these positive effects relate to
AR-mediated action or to aromatization of androgens in
estrogens remains unknown. Obese patients with PCOS tend
to have higher bone densities than their nonobese counter-
parts, suggesting that aromatization within fat tissue may be
important. It remains to be clarified whether and to what
extent other typical metabolic abnormalities associated with
PCOS, including low levels of SHBG (with correspondingly
increased bioavailable hormone concentrations) and high
concentrations of insulin, also affect skeletal homeostasis in
PCOS. Finally, differences in body composition may be ad-
ditional, clinically important mechanical determinants of
skeletal integrity. In line with this assumption, site-specific
differences in bone density have been observed in patients
with PCOS (352).

One particular area of concern relates to the bone safety of
some of the treatment regimens in hirsute women, in par-
ticular GnRH agonists and AR antagonists, alone or in com-
bination. The AR antagonist flutamide, when administered
alone, does not appear to induce changes in lumbar spine
density (353), whereas another AR antagonist, spironolac-
tone, when combined with linesterol, induces a decline in
bone density at the same site (354). However, these findings
are based on uncontrolled, short-term studies. Suppression
of estrogen and androgen levels using GnRH agonist therapy
induces postmenopausal-like bone loss in hirsute women. As
expected, this bone loss is prevented by estrogen-progestin

FIG. 9. Box plots of lumbar spine and femoral neck (FN) BMD z-
scores for 18 women with cAIS by degree of compliance with estrogen
replacement therapy. Values were compared with nominal population
means by single sample t tests. Open boxes, Poor and fair compliance;
hatched boxes, good and excellent compliance. The vertical lines of the
box define the 25th and 75th percentiles, and the error bars denote the
10th and 90th percentiles. *, P � 0.06; **, P � 0.02; ***, P � 0.0001
(compared with normative mean z-score of 0). #, P � 0.005 (good vs.
fair compliance). [Reproduced with permission from R. Marcus et al.:
J Clin Endocrinol Metab 85:1032–1037, 2000 (344). © The Endocrine
Society.]
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replacement therapy (355). More surprisingly, the AR an-
tagonist spironolactone (but not flutamide) maintained bone
density in hirsute women treated with GnRH agonists dur-
ing a 6-month study (356). The mechanism of this bone-
sparing effect remains unclear and is in contrast to the earlier
reported bone loss during spironolactone treatment in
women who are not receiving a GnRH agonist (354).

In postmenopausal women, a potential bone-sparing ac-
tion of androgens is less documented. Menopause is asso-
ciated with a 70% decline in the circulating levels of adrenal
androgens (especially DHEA-S) (348, 357), but the extent to
which this decline contributes to bone loss and fracture risk
has not been assessed prospectively. In cross-sectional stud-
ies, no consistent relationship has emerged between serum
levels of DHEA-S and bone density (358, 359). Moreover, it
remains unclear to what extent these adrenal androgens have
direct AR-mediated skeletal effects or mainly represent a
source for aromatization into estrogens.

C. Skeletal effects of androgen replacement

Although the skeleton of prepubertal boys already re-
sponds to T, as shown in an elegant calcium kinetics study
by Mauras et al. (360), the benefits of T replacement have been
most extensively documented in hypogonadal men. The in-
terest of the scientific community in the potential benefits of
androgen administration currently extends to young men
with delayed puberty, elderly men with partial androgen
deficiency, eugonadal men and glucocorticoid-treated men
suffering from osteoporosis, and even postmenopausal
women. Therefore, we will discuss the skeletal effects of T in
the well-established indication of male hypogonadism and
other new potential indications separately.

1. Skeletal effects of androgen replacement in male hypogonadism.
Long-term prospective and retrospective data with respect to
the efficacy of T replacement in male hypogonadism indicate
that, after a 2-yr initial increase, bone density is maintained
(Fig. 10). However, the reported gain in bone density is
highly variable (324, 333, 361–366), and an increase has not
even been documented in all studies (367). This large vari-

ation in effects on bone density may relate to differences in
treatment duration as well as to different methodologies and
sites to assess bone density. Table 11 summarizes the effects
of androgens on bone in hypogonadal men. Overall, cancel-
lous bone sites like the spine are more responsive than cor-
tical sites like the radius or hip (363, 365), and measurements
based on pQCT or QCT (which do not fully correct for pos-
sible androgen-induced changes in fat) show much greater
responses than approaches using DXA, dual photon absorp-
tiometry (DPA), or single photon absorptiometry (SPA).

The overall impression is that T, similar to estrogen in
postmenopausal women, primarily acts as an antiresorptive
rather than an anabolic agent. Not only are the reported
increases and the pattern of bone density gain in line with
this assumption, but also the observed responses of bio-
chemical bone turnover markers. Most studies show a con-
sistent decline in bone resorption after T replacement in
hypogonadal men (331, 363, 365–367). A similar decrease in
the levels of markers of bone formation, as would be ex-
pected during treatment with a typical antiresorptive agent,
has been observed in some studies (363, 365). However, in
various trials, markers of bone formation have been reported
to initially increase after T replacement in hypogonadal men
(362, 366–368) or human choriogonadotropin (331). In ad-
dition to its effects on bone turnover, androgen replacement
in hypogonadal men may have beneficial effects on body
composition, which in turn may protect bone. Several studies
have reported increases in lean body mass (331, 363, 367, 369)
or muscle strength (277, 367, 368, 370) after im or transdermal
T replacement, but again, other trials have been unable to
confirm these findings (365, 371).

The mode of T administration may be an important de-
terminant of its efficacy and safety. Although im adminis-
tration of T may result in supraphysiological effects on bone,
as suggested by a 5% (uncontrolled) gain of lumbar bone
density within 2 yr in eugonadal T-treated men with osteo-
porosis (372), transdermal administration tends to reach
more physiological concentrations of T (369). Preliminary
retrospective data have not revealed differences in efficacy
(or safety) between these two modes of administration (364),

FIG. 10. Increase in BMD during long-term T
substitution therapy up to 16 yr in 72 hypogo-
nadal patients. Circles indicate hypogonadal
patients with first pQCT measurement before
initiation of T substitution therapy; squares
show those patients already receiving T ther-
apy at the first QCT. The dark-shaded area
indicates the range of high fracture risk, the
unshaded area indicates the range without sig-
nificant fracture risk, and the light-shaded area
indicates the intermediate range in which frac-
tures may occur. [Reproduced with permission
from H. M. Behre et al.: J Clin Endocrinol
Metab 82:2386–2390, 1997 (364). © The Endo-
crine Society.]
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but prospective comparative trials have not been performed
as yet.

For ethical reasons, most T replacement studies in hypo-
gonadal men have been uncontrolled. Consequently, there is
little or no information about the natural evolution of bone
density in these patients or about the skeletal benefits of T in
addition to the benefits provided by calcium and vitamin D.
Moreover, the effects of androgen replacement have been
studied in small-sized studies of patients with different eti-
ologies and variable degrees of estrogen and androgen de-
ficiency. Lack of efficacy of T replacement in maintaining
bone mass has been suggested in studies including KS pa-
tients (338, 339). However, this assumption was based on
subnormal bone densities found in a small number of pa-
tients with KS who were receiving long-term T therapy. It is
likely that the need for T replacement and the patient’s re-
sponse in terms of bone density gain will depend on his
pretreatment levels of circulating T and bone density. In-
deed, according to a large retrospective study, patients with
the lowest initial BMD gain most during therapy (364). Of
particular importance are findings that the loss of skeletal
integrity may be partially irreversible. This is probably the
case in patients with IHH who experienced a failure to gain
normal bone mass during puberty. In these patients, T is
likely to maintain bone density without completely restoring
peak bone mass (330).

Finally, the question remains whether the impact of an-
drogen supplementation relates primarily to activation of the
AR. Most density-endpoint studies have used T replacement.
Because T is an aromatizable androgen, all of these studies
may reflect both androgen and estrogen replacement and,
thus, do not allow us to draw specific conclusions regarding
direct AR-mediated action only. An uncontrolled study in
eugonadal men suggests that the beneficial effects of T on
bone density may be related more to increases in E2 levels
than to changes in T concentrations (372). No studies on the
skeletal effects of the nonaromatizable androgen DHT have
been reported in hypogonadal men.

Overall, the beneficial effects of the aromatizable androgen
T on bone density are well-established in the context of male
hypogonadism. In addition to the bone-sparing effect, a T-
induced gain in lean body mass, as reflected in increased
muscle mass and strength, may provide an additional ben-
efit. However, it remains unknown to what extent these
positive effects of T replacement will ultimately protect hy-
pogonadal men against osteoporosis and osteoporotic frac-
ture occurrence.

2. Skeletal effects of androgen replacement in other indications.
Although the overall benefits of T replacement are well-

documented in hypogonadal men and although T may not
only affect bone and muscle mass but also mood, sexual
function, and hematopoiesis (373, 374), the potential benefits
of T replacement in indications other than overt hypo-
gonadism are not well-established and remain the subject of
considerable debate.

The large group of elderly men with modest or partial
degrees of T deficiency, as reflected by low levels of bio-
available T, represents the most important potential target
population for T replacement. Aging men are increasingly at
risk of bone loss and osteoporotic fracture. However, the
extent to which low levels of bioavailable T contribute to
age-related bone loss in men remains unknown. In contrast
to well-documented correlations between bioavailable E2

and bone density (4, 5), studies in elderly men have failed to
show strong or consistent associations between bioavailable
T and bone density (359, 375, 376). Small studies have
reported favorable changes on bone markers after T replace-
ment in these men, but again, findings have not been con-
sistent and their clinical significance remains unclear (377–
379). Because the relationship between bone density or bone
turnover and fracture risk is complex and, in men, largely
unsettled, additional research is required to examine
whether and to what extent beneficial effects on bone turn-
over or density may ultimately translate in clinical benefits
in terms of fracture risk reduction.

Two randomized double-blind placebo-controlled studies
in elderly men with partial androgen deficiency have been
large enough and of sufficient duration to evaluate the effects
of T on bone density (Table 12). In the trial by Snyder et al.
(378), the use of transdermal T during 36 months increased
bone density, but no additional benefit could be documented
compared with the control group receiving calcium and vi-
tamin D supplementation (Fig. 11). In a study by Kenny et al.
(379), transdermal T maintained bone density, whereas sig-
nificant bone loss was observed in the placebo group, despite
calcium and vitamin D supplementation. It is possible that
both studies tend to underestimate the potential beneficial
effect of T. As indicated, the placebo groups in both studies
were supplemented with calcium and vitamin D, and this
may have partially blunted any age-associated bone loss. In
addition, a significant proportion of the men included in the
Snyder study (378) were not really hypogonadal but had T
levels in the low normal range. A post hoc analysis has high-
lighted the importance of pretreatment androgen status on
treatment outcome: the lower the pretreatment serum T lev-
els, the greater the effect of T on bone density. In addition,
both studies were performed with transdermal T, which
might be less effective than im T, the more commonly used

TABLE 12. Effects of androgen replacement on bone density in men with partial androgen deficiency

First author, year (Ref.) Study
group (n)

Duration
(yr) Type of replacement Method of

measurement Effect on BMD

Snyder et al., 1999 (378) 50 3 Testoderm transdermally,
Ca � vit D

DXA spine 1 (Also in placebo group)

DXA hip �
Kenny et al., 2001 (379) 44 1 Androderm transdermally,

Ca � vit D
DXA total body,

spine, hip
� (No further loss)

1, Increased; �, no change; vit, vitamin; n, number of patients in study group.
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androgen in hypogonadal men. Finally, these studies do not
answer the critically important question about a potential
threshold serum T level that may warrant T replacement in
elderly men. Animal data suggest that it may be lower than
the lower range of young normal men (233).

More recently, the effects of the nonaromatizable andro-
gen DHT have also been evaluated in men with serum T
levels in the low normal range. However, this study was of
short duration (3 months) and only evaluated one marker of
bone turnover (osteocalcin), which was not affected (371).

T replacement might be of more benefit to men who have
both T deficiency and an additional increase in the risk for
osteoporosis. A placebo-controlled cross-over study in
glucocorticoid-treated men suffering from osteoporosis re-
ported a 5% gain in lumbar spine bone density after 1 yr of
im administration of T (380). However, no long-term data are
available on the effects of T supplementation on bone loss
and fracture risk in steroid-induced osteoporosis.

Delayed puberty represents another potential indication
for T therapy. A 6-month study in a small number of ado-
lescents with delayed puberty suggests that treatment with
a low dose of T may increase bone density. However, the
ultimate impact of this treatment on adult bone density was
not documented (326).

Finally, in postmenopausal osteoporosis, the potential role
of T administration remains to be defined as well (381, 382).
The combination of low-dose T (or methyl-T) and estrogen
administration may reverse the inhibitory effects of estrogen
on biochemical markers of bone formation (383). Limited
data also suggest that combined estrogen and T replacement
may result in an additional increase in bone density com-
pared with estrogen alone (382, 384). However, the potential
side effects of long-term androgen replacement are a concern
and, as long as long-term safety and efficacy data are lacking,
androgen and estrogen combination therapy cannot be rec-
ommended in postmenopausal women.

In recent years, several studies have addressed the skeletal
effects of the weaker androgen DHEA. A placebo-controlled
double-blind study in elderly women (�70 yr) suggested
that 50 mg daily of DHEA increased serum levels of DHEA-S,
with a concomitant decline in biochemical markers of bone
resorption and a modest increase in bone density at some
sites (385). Such beneficial effects of DHEA have not been
confirmed in men (385), except in one uncontrolled small
study (386). The women and men included in these studies
had variable concentrations of DHEA-S at baseline. It is plau-
sible that women and men with the lowest serum levels of
DHEA would have the greatest benefit, but this remains to
be established. In these trials, DHEA treatment increased T
and E2 concentrations (385–387), indicating that DHEA may
act as a prohormone for these more potent sex steroids.
However, further prospective controlled long-term research
has to determine the bone-sparing potential of DHEA, alone
or in combination with established osteoporotic treatments.

In summary, current scientific evidence does not allow
recommending T replacement or other androgens to promote
bone health in indications other than male hypogonadism.

D. Skeletal effects of selective modulation of androgen and
estrogen action in men

In line with published animal data, AR antagonists, ER
antagonists, SERMs, aromatase inhibitors, and type II 5�-
reductase inhibitors all potentially interfere with male skel-
etal homeostasis. However, few studies have investigated
the potential skeletal benefits and side effects of these drugs
in men.

Finasteride, a type II 5�-reductase inhibitor, does not de-
crease vertebral bone density (388) or increase bone turnover
markers (35) in men suffering from benign prostate hyper-
plasia, according to two small-sized short-term studies. In
accordance, the recent finding that type I 5�-reductase is
predominantly expressed in osteoblasts (30) supports the
absence of effects on bone in these clinical studies with a type
II 5�-reductase inhibitor. These findings suggest that selec-
tive interference with the AR pathway in men may be rel-
atively safe with respect to bone, but data remain scarce.
Therefore, surveillance of bone density still remains ad-
visable, especially in men with clinical risk factors for
osteoporosis.

The skeletal risks and benefits of selective interaction with
the ER pathway in men remain unsettled as well. Interfering
with estrogen production in men is likely to be associated
with deleterious effects on bone, as reflected in the animal
studies. In an uncontrolled study, administration of the aro-
matase inhibitor anastrazole to elderly men for 9 wk was
associated with an increase in bone resorption (389). In con-
trast, estrogen suppression via administration of anastrazole
to young male adolescents did not affect calcium kinetics
(390). Long-term studies should further clarify the impact of
aromatase inhibitors on skeletal integrity in men.

In agreement with animal data, high-dose estrogens are
bone-sparing in selected populations such as patients with
prostate carcinoma after surgical castration (306) and male-
to-female transsexuals receiving chemical castration (391,
392). In elderly men, preliminary evidence suggests that

FIG. 11. Mean (� SE) BMD of the lumbar spine (L2–L4) as a per-
centage of the basal value in 108 men over 65 yr of age who were
treated with either T or placebo (54 men each). BMD increased sig-
nificantly (P � 0.001) from 0–36 months in both groups, but the
increase was not significantly different between the two groups at 36
months. [Reproduced with permission from P. J. Snyder et al.: J Clin
Endocrinol Metab 84:1966–1972, 1999 (378). © The Endocrine
Society.
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short-term low-dose estrogen may reduce bone resorption as
assessed by biochemical markers (393). However, because of
its potential feminizing side effects, this type of therapy
cannot be recommended. In contrast, SERMs could poten-
tially have a more acceptable risk-benefit profile in men.
However, Doran et al. (394) recently failed to show a signif-
icant bone-sparing effect of raloxifene in elderly men, but this
conclusion was based on a short-term evaluation of bone
turnover over a 6-month period. Further studies are needed
to explore the potential skeletal benefit of selective stimula-
tion of the ER pathway in men. It remains a tempting hy-
pothesis that selected populations of elderly men, particu-
larly those with low serum estrogen concentrations, would
benefit from treatment with SERMs. This assumption is sup-
ported by the observation that raloxifene suppresses bone
resorption in elderly men with low E2 levels (394). A potential
alternative is the recently reported gender-neutral synthetic
steroid, estren, which increases bone mass without affecting
reproductive organs in both male and female rodents (395,
396). Whether estren will have similar beneficial effects for
the treatment of osteoporosis in humans remains to be
determined.

The relative importance of androgens and estrogens for
bone turnover in men still remains unresolved. Falahati-Nini
et al. (397) first studied elderly men under conditions of
physiological T and E2 replacement and then assessed the
impact on bone turnover of withdrawing both T and E2,
withdrawing either T or E2, or continuing both during 3 wk.
Their findings establish E2 as the dominant sex steroid reg-
ulating bone resorption in normal elderly men, whereas both
T and E2 independently maintain bone formation. More re-
cently, an analogous pharmacological intervention study
was designed by Leder et al. (398), inducing combined T and
E2 deficiency, T and E2 sufficiency, or selective E2 deficiency
in young men during a longer experimental period (12 wk).
Both androgens and estrogens appeared to be independent
mediators of bone resorption in young adult men and may
have similar effects on osteoblast function as well. The dif-
ferences reported between the two studies most likely rep-
resent differences in study subjects or study design, or the
(in)ability to separate direct effects of sex steroid deprivation
on osteoblast function from indirect ones (remodeling-
coupled increases in osteoblast activity). Longer-term studies
are needed for a comprehensive picture of the relative role
of sex steroids in regulating bone turnover in men.

VII. General Conclusions

Bone development and growth are similar in boys and
girls up to the start of puberty. Thereafter, skeletal sexual
dimorphism evolves with a greater bone mass in adult males
than in adult females. The volumetric or true density of bone
is, however, similar in both sexes. Men have more bone
because of greater bone volume as a result of higher peri-
osteal bone formation rates. A similar sexual dimorphism is
also observed in many other species (e.g., rodents), and a
wide variety of data suggest androgens and estrogens to be
the hormones responsible for this sexual dimorphism.

After a period of peak bone mass, age-related bone loss
occurs in both genders, but men experience less age-related
net bone loss, again in contrast to the accelerated bone re-
sorption in women. Androgen deficiency in men induces
cancellous bone loss similar to estrogen deficiency in post-
menopausal women. The histological and biochemical
changes induced by castration in men are, again, similar to
changes observed in postmenopausal women; the rate of
bone remodeling is increased after loss of sex steroids, re-
sulting in enhanced osteoclastogenesis and an increase in the
number of osteoblast progenitors, with the former exceeding
the latter. This imbalance between resorption and formation,
together with a delay of osteoclast apoptosis, is responsible
for a decrease in trabecular bone volume, thickness, and
connectivity (198, 395).

Recent studies using various sex steroid-related transgenic
mouse models as well as selective pharmacological modu-
lations of the different pathways of androgen action have
expanded our understanding of the relative roles of the AR,
ER�, and ER� in mediating the effects of androgens on the
skeleton. Androgen action on bone differs according to the
skeletal compartment, species, sex, and maturation or age
(Table 13). In all species investigated thus far, androgens as
well as estrogens maintain cancellous bone mass and integ-
rity, regardless of age or sex. Sex steroids reduce cancellous
bone turnover primarily via a down-regulation of osteoclas-
togenesis after interaction with bone marrow osteoblast pre-
cursor cells (and maybe also via direct action on osteoclasts).
Moreover, recent data indicate that androgens as well as
estrogens also induce apoptosis of osteoclasts and prevent
osteoblast apoptosis. Although androgens via the AR and
estrogens via the ERs can induce these effects, it is less clear
what the relative contribution of each system is in the normal
life cycle of male and female animals and humans. Recent

TABLE 13. General overview of androgen action on bone in males

Cancellous bone
Cortical bone

Longitudinal growth Radial growth

Effect of androgen
action

Bone-sparing Growth-stimulating Growth-stimulating

Sex specific No ? Yes (only documented in rodents)
Age specific No During puberty During puberty/after puberty?
Species specific No Yes (epiphyseal closure only in humans) ?
Mechanism of action Similar to estrogens: decrease

of cancellous bone turnover
Similar to estrogens: stimulation of

endochondral bone formation/
epiphyseal closure (biphasic effect)

Opposite to estrogen: stimulation
of periosteal bone formation

Receptors AR and ER� ER� AR and ER�

?, Conflicting results reported. For references, see text.
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data suggest that androgen action on cancellous bone de-
pends (only) on (local) aromatization of androgens into es-
trogens. However, at least in rodents, androgen action on
cancellous bone can be directly mediated via AR activation,
even in the absence of ERs. These data establish the dual
mode of action of T via both the AR and ER� in males (Table
13). In contrast, estrogen effects on cancellous bone are al-
ways mediated via ER�. In females, ER� is involved in lon-
gitudinal and radial bone growth as well as in the regulation
of cancellous bone.

Androgens increase cortical bone size via stimulation of
both longitudinal and radial growth. First, androgens, like
estrogens, have a biphasic effect on endochondral bone for-
mation; at the start of puberty, sex steroids stimulate endo-
chondral bone formation, whereas they induce epiphyseal
closure at the end of puberty. Androgen action on growth
plate closure is, however, clearly mediated via aromatization
in estrogens and interaction with ER� (Table 13). Indeed, the
bone phenotype of men suffering from estrogen deficiency
(due to a mutation in the aromatase gene) or resistance (sec-
ondary to a mutation in the ER� gene) is characterized by the
absence of a pubertal growth spurt and delayed epiphyseal
closure. In growing rodents, who do not experience epiphy-
seal closure, androgens and estrogens seem to stimulate lon-
gitudinal growth via ER� in the growth plate. Low concen-
trations of estrogens (as present in males) appear to be
stimulatory, whereas higher concentrations of estrogens (as
in females) are inhibitory for longitudinal bone growth. The
role, if any, of AR stimulation with respect to longitudinal
growth and epiphyseal closure is not well-established in any
species.

Androgens increase radial growth, whereas estrogens de-
crease periosteal bone formation. However, such action has
only been documented in rodents and poorly or only par-
tially in humans (346). Androgens stimulate periosteal bone
formation in male rodents during puberty (Table 13).
Whether androgens also stimulate periosteal bone formation
after puberty remains to be clarified. This latter effect of
androgens may be important because bone strength in males
seems to be determined by relatively higher periosteal bone
formation and, therefore, greater bone dimensions, relative
to muscle mass at older age. Indeed, because volumetric bone
density is similar in both genders and bone fragility and
subsequent fracture incidence is greater in females, bone size
is a major determinant of bone strength. Understanding the
hormonal and humoral mechanisms of periosteal bone
growth or, more generally, the growth and maintenance of
the cortical area is of major importance. However, little is
known about the differences in cellular behavior of the two
major bone compartments (cancellous and cortical), and the
lack of understanding of the effects of sex steroid hormones
on these two compartments is only a reflection of this state-
ment. Indeed, it remains unclear to what extent androgens
directly interact with (periosteal) osteoblasts or their precur-
sors or, alternatively, stimulate osteoblasts secondary to me-
chanical loading via androgen-mediated increases of body
growth and muscle. The relative importance of direct effects
of androgens via local sex steroid receptors in osteoblasts
might soon be further clarified because mice with osteoblast-
specific inactivations of the AR, ER�, and ER� are currently

being developed. Experiments in mice suggest that both the
AR and ER� pathways are involved in androgen action on
radial bone growth in males, but the relative importance and
interaction between both pathways is unclear (Table 13).
There are conflicting data from rodent studies; most data
indicate that the AR is the mediator of periosteal expansion
(Tfm rats and ANDRKO mice). However, ER� stimulation
(in the absence of ER�) can also stimulate periosteal growth
and aromatase inhibitors in the presence of the AR, and
normal androgen levels inhibit periosteal growth in rats. A
possible scenario, still to be confirmed, would be that peri-
osteal expansion can be achieved by AR activation and, to a
lesser extent, by ER� but is inhibited by ER� activated by
relatively high estrogen concentrations. This hypothesis
could explain why bone volume is arrested earlier in girls
than boys during puberty and why periosteal expansion
reoccurs in postmenopausal women. The molecular mech-
anism of action, even whether this occurs via direct or in-
direct mechanisms, and the role of the GH-IGF-I axis all have
to be further clarified.

Treatment of severe androgen deficiency with androgen
replacement therapy is beneficial for bone. Whether replace-
ment therapy is also warranted in partially androgen-defi-
cient elderly men is not unequivocally shown, and the overall
effects on all target tissues and quality of life and survival
should be further explored. Selective AR modulators, com-
bining agonistic effects on bone and other target tissues (en-
dothelium, brain, etc.) and antagonistic or neutral effects on
prostate, might be equally attractive as SERMs for women.
In view of the essential role of ER� on cancellous bone, some
SERMs with the appropriate tissue selectivity might even be
useful for elderly men with osteoporosis. Vice versa, selec-
tive AR modulators might be equally interesting for meta-
bolic bone diseases in women. To achieve such goals, the
molecular targets of ligand-activated AR/ERs mediating
their action on bone morphology and metabolism have to be
much better identified. New technologies of genetics and
proteomics combined with the availability of a whole set of
cell-specific transgenic mice may soon provide new insights.

In summary, the AR is present in nearly all bone cells, and
the major androgen, T, has a major impact on skeletal growth
and maintenance, not only via signaling through the AR, but
also via ERs. During skeletal remodeling, both receptor path-
ways generate similar and additive effects on bone. For
skeletal longitudinal growth, ER� is the crucial pathway,
whereas for periosteal growth, activation of both the AR and
ER� appears to be relevant.
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